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Motif discovery in time series

Definition

Motif Discovery consists of finding repeated patterns and locating their
occurrences in a time series without prior knowledge about their shape or
location.
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Figure: ECG with premature ventricular contraction (PVC)

Constraints:

A single long univariate time series

May contain motifs of different length
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State-of-the-art

(A): Frequency (B): Similarity

Two main families of algorithms:

Frequency-based: algorithms identify sets of subsequences that
represent the most frequently repeated patterns.

Similarity-based: algorithms identify sets of subsequences that
represent repeated patterns with minimal variability between
occurrences, regardless of frequency.

Observation: Most algorithms rely on three core parameters: the
number of motifs, the motif length, and a similarity threshold.
: In practice, the setting often results from a trial-and-error strategy.
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PEPA algorithm overview

1 2.a

3 2.b

Algorithm steps:

1 From time-series to graph
2 Graph clustering with persistent homology

a From graph to persistent diagram
b From persistent diagram to clusters

3 From cluster to motifs sets
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From time series to graph

Aim: Map a time series S = (s1, . . . , sn) ∈ Rn into an undirected
weighted graph GK

S = (V ,E ).

Graph specification

Vertices: V = (Sw
i )i=1...n−w+1, subsequences of length l of S

Edges: E = E1 ∪ E2, union of two edges sets:

Similarity set: each subsequence Sw
i is connected to its K most

similar non-overlapping subsequences.

E1 =
n−w+1⋃

i=1

{(
Sw
i ,N

k
i , d

k
i

)
| k = 1, . . . ,K

}
, (1)

Time set: edges connecting time adjacent subsequences.

E2 =
n−w⋃
i=1

{(Sw
i , S

w
i+1,max

(
d1
i , d

1
i+1

)
}. (2)
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Distance between subsequences
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(A): Amplitude scaling
orignal
shifted

(B): Offset shift (C): Linear trend

Definition (LT-normalized Euclidean distance)

The LT-normalized (Euclidean) distance between x ∈ Rw and y ∈ Rw is:

dLT (x , y) =

∥∥∥∥∥ x − (αxt+ βx1)

∥x − (αxt+ βx1)∥
− y − (αy t+ βy1)

∥y − (αy t+ βy1)∥

∥∥∥∥∥
where t = (0, . . . ,w − 1), 1 = (1, . . . , 1) ∈ Rw and (αx , βx) are solutions
of the linear regression problem argmin

(a,b)∈R2

∥x − (at+ b1)∥2.
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Distance between subsequences

Subsequence Electrocardiogram

Sequence location
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(α, β)-rectified distance

Let α ∈ R∗
+ and β ∈]0, 2[, the (α, β)-rectified

distance between x ∈ Rw and y ∈ Rw is:

dα,β(x , y) = 2fα,β(dLT (x , y))/fα,β(2)

with
fα,β(x) =

√
tanh(αβ2) + tanh(α(x2 − β2))

-2 0 2
u

0

1

2

2f
,

(u
)/f

,
(2

)

: 0.01, : 0.01
: 0.5, : 0.01

: 10, : 0.01
: 10, : 1

Graph computation complexity

For any time series S ∈ Rn, the graph GK
S is computed in O(Kn2).
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Graph clustering through persistent homology

Main Idea

Subsequences that overlap the same motif are close to each other and far
from any other subsequences.
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Graph clustering through persistent homology
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(D): w = 3
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(E): w = 10
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(F): w = 12
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(G): w = 15

0 3 6 9 12 15 18

(H): Persistent Diagram

Connected subgraph tracking rule:

Birth Date: distance at which its first edge appears.

Death Date: distance at which the subgraph gets connected an older
subgraph.
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Graph clustering through persistent homology
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Graph clustering through persistent homology

Some properties:

All nodes (subsequences) have
birth and death dates.

Births and deaths are tracked
with an algorithm similar to the
Kruskall’s algorithm for
computing the minimum
spanning tree (MST).

The filtration of GK
S can be

reduced to the filtration of its
MST.
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From persistence diagram to motif sets

Input: the graph of a time series, GK
S .

Parameters: persistent cut, birth cut.

Procedure

1 Perform filtration and prevent subgraphs from merging when their
persistence exceeds the persistence cut.

2 Remove all subsequences whose date of birth is greater than the
birth cut.

3 For each subgraph (motif), merge subsequences that are
time-adjacent (occurrences) while preventing overlapping between
occurrences.
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Parameter heuristics
Birth cut:
Otsu method: the cut maximizes
the inter-class variance.

Persistence cut:
Fixed cut: the number of motifs is
given.
Adaptive cut: based on the
persistence gap.

Distance parameter (α, β):
For any α ∈ R+ and β ∈]0, 2[, fα,β
is bijective on [0, 2] and strictly
increasing.
Thus, edges’ weight order is
preserved while their value changes
when fα,β is modified: the filtration
and the MST are preserved.
The optimization criteria is given by:

argmin
α,β

DC .S(Bα,β ,U[0,2])

where DC .S is the Cauchy-Schwartz
divergence, and Bα,β is the kernel
density estimation of vertices’ birth,
and U[0,2] is the density of the
uniform distribution on [0, 2].
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Examples

Web App
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http://127.0.0.1:8050


Experiment: comparison with state-of-the-art

Protocol:

task: motif set discovery

datasets: 6 real-worlds, 3
synthetics

metrics: f1-score

algorithms: PEPA, A-PEPA
(adaptative version), and 6
competitors.

Figure: Critical difference diagram (f1-score based rank, Friedman’s test &
Nemenyi post-hoc test). PEPA and A-PEPA performs significantly better than
other algorithms.
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Experiment: Influence of the subsequence length

Question: Does the subsequence length parameter affect the retrieval of
variable-length motif sets?
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Thank you!

PEPA algorithm: T. Germain, C. Truong, and L. Oudre.
“Persistence-Based Motif Discovery in Time Series”. In: IEEE
Transactions on Knowledge and Data Engineering (2024)

Graph clustering: Alexandre Bois, Brian Tervil, and Laurent Oudre.
“Persistence-based clustering with outlier-removing filtration”. In:
Frontiers in Applied Mathematics and Statistics 10 (2024), p. 1260828

Distance: Thibaut Germain, Charles Truong, and Laurent Oudre.
Linear-trend normalization for multivariate subsequence similarity search.
In Proceedings of the International Conference on Data Engineering
Workshops (ICDEW), Utrecht, Netherlands. 2024

Web App: Thibaut Germain, Charles Truong, and Laurent Oudre.
Interactive motif discovery in time series with persistent homology. In
Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), Vilnius, Lithuania. 2024
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Test

A
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