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Motivation

Similarity search: Searching for subsequences (5) in a large time
series S similar to a query sequence @ based on a similarity/distance

measure d.

Electrocardiogram

M;Ww

\
\
/

Sequence

Time series

T

Sequence location

Desirable properties of the distance function d:

1. Invariance to some deformations: Let G = {g | g : R — R"}

a group of deformations acting on RY, d is invariant to the
action of G if for any (51,52) € RY x R", (g1,8) € G x G:

d(g1(51), &2(S2)) = d(51, S2)

2. Fast computation of distance profiles.




Elementary deformations

Amplitude scaling Offset shift Linear trend
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Main idea: Subsequences are normalized so that the Euclidean
distance between their representation is invariant to the deformation.

Deformation | Group action | Normalization N (d(x,y) = [N(x) — N(y)I|)
. g X AX, X
Amp. scaling AER” X Il
. g :x—x+bl X X il
Offset shift beR, 1=(1,...,1) s.t f1x = mean(x)
g x+ x+ (at + bl) x = x — (axt + Bx1)

Linear trend

(a,b) €R2, t=(1,...,w) s.t (ax, Bx) = argmin ||x — (at + B1)||?
(,8)




Z-normalization: Invariance

Definition (Euclidean Z-normalized distance)

The Euclidean Z-normalized distance between x and y is :

Xx—pxl y—pl

X —pxl y—pyl B
[Ix = 2l My — 1|

Ox oy

— Vw

dz(X,_)/) =

Proposition (Invariance)
dz is invariant to amplitude scaling and offset shift.



Z-normalization: Fast computation

Proposition

The computation of the Z-distance profile between @ € RY and
S eR", (w < n), isin O(nlog(n)).

Proposition

The Z-normalized distance between x and y can be written as:

dz(x,y) = \/2<w— boy) = witty WMXW)

Ox0Oy




Z-normalization: Running example
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Influence of linear trend on the Euclidean Z-normalized distance:
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LT-normalization: Invariance

Definition
The Euclidean LT-normalized distance between x and y is:
X — (it + By 1 —(a,t+ 5,1
dir(ey) = | et ROy oot )
Ix = (et + B )| [ly = (et + By 1)]]
where t = (1,...,w) and (ax, Ox) are solutions of the least square

problem: arg min(,, ) [Ix — (at + B1)|1?

Proposition

diT is invariant to amplitude scaling, offset shift, and linear
trend.



LT-normalization: Fast computation

Proposition
The LT-normalized distance between x and y can be written as:

dir(x,y) = \/2(1 _ o) = wilpgty + O‘XO‘yU%))

NNy
where:
Nx = |Ix — (axt + Bx1)||
Bx = pix — Qxfit
Qx = COV(X7 t)/a% = %(<X7 t> - /UJX'ut)/O-t%
Proposition

The computation of the LT-distance profile between Q € RY and
S eR"”, (w < n), is in O(2nlog(n)).



LT-normalization: Running example
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LT-normalization: Extension to multivariate time series

Definition

The multivariate LT-normalized distance between x € R*%" and
y € R>W js;

ML

duit(x,y) = 7 (xR0, y (k)

k=1
where x(K) is the k" dimension of the time series
Remark

We considered an uniform averaging over dimensions. Other
aggregating method can be considered" .

1Chin-Chia Michael Yeh, Nickolas Kavantzas, and Eamonn Keogh. “Matrix profile VI: Meaningful
multidimensional motif discovery”. In: 2017 IEEE international conference on data mining (ICDM). IEEE
2017, pp. 565-574.



Experiment 1: Similarity search

Algorithm: Fast similarity search?
Distances: Z-normalized (Z), LT-normalized (LT)
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2Abdullah Mueen et al. The Fastest Similarity Search Algorithm for Time Series Subsequences under
Euclidean Distance. Aug. 2022.



Experiment 2: Motif set discovery

Motif set algorithm: STOMP3 (matrix profile).

Distances: Euclidean (Euc), Z-normalized (Z), LT-normalized (LT),
Trend removal* & Z-normalized (STL+Z).

Metric: fl-score.

distance BEuc STL4Z Z LT
dataset

s-search 0.20 0.86 0.87 0.86
m-set 0.25 0.62 0.62 0.62
mitdb1 0.42 0.54 050 0.58
mitdb2 0.16 0.44 043 0.45
ptt-ppg 0.54 0.58 0.53 0.57
arm-coda 0.25 0.26 0.25 0.25

3Yan Zhu et al. “Matrix profile ii: Exploiting a novel algorithm and gpus to break the one hundred
million barrier for time series motifs and joins". In: 2016 IEEE 16th international conference on data
mining (ICDM). |EEE. 2016, pp. 739-748.

4Robert B Cleveland et al. “STL: A seasonal-trend decomposition”. In: J. Off. Stat 6.1 (1990),
pp. 3-73.



Experiment 3: Scalability

Scalability of STOMP algorithm (matrix profile) with the time series
length for Z-normalized (blue) and LT-normalized (orange) distances.
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