Linear-trend normalization for multivariate subsequence similarity search

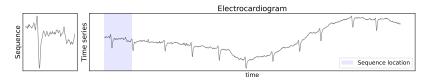
T. Germain^{1,2}, C. Truong^{1,2}, and L. Oudre^{1,2}

¹Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190, Gif-sur-Yvette. France ²Université de Paris, CNRS, Centre Borelli, F-75005 Paris, France

MulTiSA, May 2024

Motivation

Similarity search: Searching for subsequences (S_i^w) in a large time series S similar to a query sequence Q based on a similarity/distance measure d.



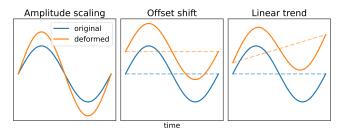
Desirable properties of the distance function *d*:

1. <u>Invariance to some deformations</u>: Let $G = \{g \mid g : \mathbb{R}^w \mapsto \mathbb{R}^w\}$ a group of deformations acting on \mathbb{R}^w , d is invariant to the action of G if for any $(S_1, S_2) \in \mathbb{R}^w \times \mathbb{R}^w$, $(g_1, g_2) \in G \times G$:

$$d(g_1(S_1), g_2(S_2)) = d(S_1, S_2)$$

2. Fast computation of distance profiles.

Elementary deformations



<u>Main idea:</u> Subsequences are normalized so that the Euclidean distance between their representation is invariant to the deformation.

Deformation	Group action	Normalization $N\left(d(x,y) = \ N(x) - N(y)\ \right)$
Amp. scaling	$g: x \mapsto \lambda x, \\ \lambda \in \mathbb{R}_+^*$	$x\mapsto \frac{x}{\ x\ }$
Offset shift	$g: x \mapsto x + b1$ $b \in \mathbb{R}, \ 1 = (1, \dots, 1)$	$x \mapsto x - \mu_x 1$ $s.t \ \mu_x = \text{mean}(x)$
Linear trend	$g: x \mapsto x + (at + b1)$ $(a,b) \in \mathbb{R}^2, \ t = (1,\ldots,w)$	$x \mapsto x - (\alpha_x t + \beta_x 1)$ $s.t \ (\alpha_x, \beta_x) = \underset{(\alpha, \beta)}{\operatorname{arg min}} \ x - (\alpha t + \beta 1)\ ^2$

Z-normalization: Invariance

Definition (Euclidean Z-normalized distance)

The Euclidean Z-normalized distance between x and y is :

$$d_{Z}(x,y) = \left\| \frac{x - \mu_{X}1}{\sigma_{X}} - \frac{y - \mu_{Y}1}{\sigma_{Y}} \right\| = \sqrt{w} \left\| \frac{x - \mu_{X}1}{\|x - \mu_{X}1\|} - \frac{y - \mu_{Y}1}{\|y - \mu_{Y}1\|} \right\|$$

Proposition (Invariance)

 d_Z is invariant to amplitude scaling and offset shift.

Z-normalization: Fast computation

Proposition

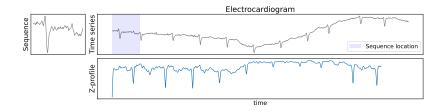
The computation of the Z-distance profile between $Q \in \mathbb{R}^w$ and $S \in \mathbb{R}^n$, (w < n), is in $\mathcal{O}(n \log(n))$.

Proposition

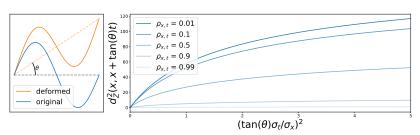
The Z-normalized distance between x and y can be written as:

$$d_{Z}(x,y) = \sqrt{2\left(w - \frac{\langle x,y \rangle - w\mu_{x}\mu_{y}}{\sigma_{x}\sigma_{y}}\right)}$$

Z-normalization: Running example



Influence of linear trend on the Euclidean Z-normalized distance:



LT-normalization: Invariance

Definition

The Euclidean LT-normalized distance between x and y is:

$$d_{LT}(x,y) = \left\| \frac{x - (\alpha_x t + \beta_x 1)}{\|x - (\alpha_x t + \beta_x 1)\|} - \frac{y - (\alpha_y t + \beta_y 1)}{\|y - (\alpha_y t + \beta_y 1)\|} \right\|$$

where t = (1, ..., w) and (α_x, β_x) are solutions of the least square problem: $\arg\min_{(\alpha,\beta)} \|x - (\alpha t + \beta 1)\|^2$

Proposition

 d_{LT} is invariant to amplitude scaling, offset shift, and linear trend.

LT-normalization: Fast computation

Proposition

The LT-normalized distance between x and y can be written as:

$$d_{LT}(x,y) = \sqrt{2\left(1 - \frac{\langle x,y \rangle - w(\mu_x \mu_y + \alpha_x \alpha_y \sigma_t^2)}{\eta_x \eta_y}\right)}$$

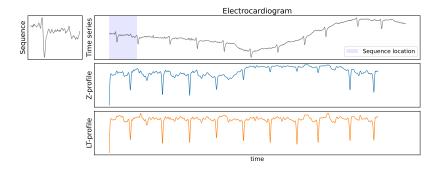
where:

$$\begin{cases} \eta_x = \|x - (\alpha_x t + \beta_x 1)\| \\ \beta_x = \mu_x - \alpha_x \mu_t \\ \alpha_x = \text{cov}(x, t) / \sigma_t^2 = \frac{1}{w} (\langle x, t \rangle - \mu_x \mu_t) / \sigma_t^2 \end{cases}$$

Proposition

The computation of the LT-distance profile between $Q \in \mathbb{R}^w$ and $S \in \mathbb{R}^n$, (w < n), is in $\mathcal{O}(2n \log(n))$.

LT-normalization: Running example



LT-normalization: Extension to multivariate time series

Definition

The multivariate LT-normalized distance between $x \in \mathbb{R}^{d \times w}$ and $y \in \mathbb{R}^{d \times w}$ is:

$$d_{MLT}(x,y) = \sqrt{\frac{1}{d} \sum_{k=1}^{d} d_{LT}^{2}(x^{(k)}, y^{(k)})}$$

where $x^{(k)}$ is the k^{th} dimension of the time series.

Remark

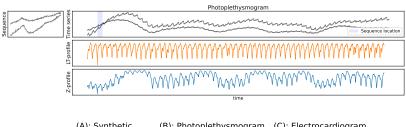
We considered an uniform averaging over dimensions. Other aggregating method can be considered¹.

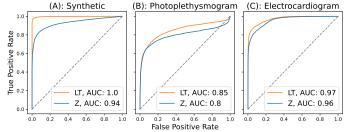
¹Chin-Chia Michael Yeh, Nickolas Kavantzas, and Eamonn Keogh. "Matrix profile VI: Meaningful multidimensional motif discovery". In: 2017 IEEE international conference on data mining (ICDM). IEEE. 2017, pp. 565–574.

Experiment 1: Similarity search

Algorithm: Fast similarity search²

<u>Distances:</u> Z-normalized (Z), LT-normalized (LT)





Experiment 2: Motif set discovery

Motif set algorithm: STOMP³ (matrix profile).

<u>Distances:</u> Euclidean (Euc), Z-normalized (Z), LT-normalized (LT),

Trend removal⁴ & Z-normalized (STL+Z).

Metric: f1-score.

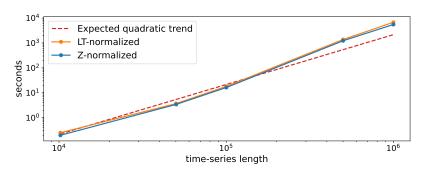
distance dataset	Euc	STL+Z	Z	LT
s-search	0.20	0.86	0.87	0.86
m-set	0.25	0.62	0.62	0.62
mitdb1	0.42	<u>0.54</u>	0.50	0.58
mitdb2	0.16	0.44	0.43	0.45
ptt-ppg	0.54	0.58	0.53	0.57
arm-coda	0.25	0.26	0.25	0.25

³Yan Zhu et al. "Matrix profile ii: Exploiting a novel algorithm and gpus to break the one hundred million barrier for time series motifs and joins". In: 2016 IEEE 16th international conference on data mining (ICDM). IEEE. 2016, pp. 739–748.

⁴Robert B Cleveland et al. "STL: A seasonal-trend decomposition". In: *J. Off. Stat* 6.1 (1990), pp. 3–73.

Experiment 3: Scalability

Scalability of STOMP algorithm (matrix profile) with the time series length for Z-normalized (blue) and LT-normalized (orange) distances.



Thank you