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Motivation

The word ”shape” commonly refers to the appearance of an object.

From a geometric perspective, shape refers to geometric properties
of an object that are invariant to some source of
variability/deformations.

Shape-based methods benefit from good generalization properties
and they have links with contrastive learning, domain adptation.

Shape analysis has applications in computer vision and
computational anatomy but can be extended to time series.
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Shape-related problems in time series
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Similarity search in time series

Definition

Similarity search consists in retrieving occurrences of a query pattern in a
time series.
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Main goal

Defining distance functions between subsequences that take into account
sources of variability and are computationally efficient.

Hypothesis:

A single long time series

No time warping variations
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A distance example: LT-normalized Euclidean distance
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Definition (LT-normalized Euclidean distance)

The LT-normalized (Euclidean) distance between x ∈ Rw and y ∈ Rw is:

dLT (x , y) =

∥∥∥∥∥ x − (αxt+ βx1)

∥x − (αxt+ βx1)∥
− y − (αy t+ βy1)

∥y − (αy t+ βy1)∥

∥∥∥∥∥
where t = (0, . . . ,w − 1), 1 = (1, . . . , 1) ∈ Rw and (αx , βx) are solutions
of the linear regression problem argmin

(a,b)∈R2

∥x − (at+ b1)∥2.
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A distance example: LT-normalized Euclidean distance

Subsequence Electrocardiogram

Sequence location
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Let α ∈ R∗
+ and β ∈]0, 2[, the (α, β)-rectified

distance between x ∈ Rw and y ∈ Rw is:

dα,β(x , y) = 2fα,β(dLT (x , y))/fα,β(2)

with
fα,β(x) =

√
tanh(αβ2) + tanh(α(x2 − β2))
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Graph computation complexity

For any sequence Q ∈ Rw and time series S ∈ Rn, the distance profile
between Q and S is computed in O(n log(n)).
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Motif discovery in time series

Definition

Motif Discovery consists of finding repeated patterns and locating their
occurrences in a time series without prior knowledge about their shape or
location.
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Figure: ECG with premature ventricular contraction (PVC)

Hypothesis:

A single long univariate time series

May contain motifs of different length
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PEPA algorithm overview

1 2.a

3 2.b

Algorithm steps:

1 From time series to graph
2 Graph clustering with persistent homology

a From graph to persistent diagram
b From persistent diagram to clusters

3 From cluster to motifs sets
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From time series to graph

Main idea

Subsequences that overlap the same motif are close to each other and far
from any other subsequences.
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Graph clustering through persistent homology
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(H): Persistent Diagram

Connected subgraph tracking rule:

Birth Date: distance at which its first edge appears.

Death Date: distance at which the subgraph gets connected an older
subgraph.
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Graph clustering through persistent homology
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From persistence diagram to motif sets

Input: the graph of a time series, GK
S .

Parameters: persistent cut, birth cut.

Procedure

1 Perform filtration and prevent subgraphs from merging when their
persistence exceeds the persistence cut.

2 Remove all subsequences whose date of birth is greater than the
birth cut.

3 For each subgraph (motif), merge subsequences that are
time-adjacent (occurrences) while preventing overlapping between
occurrences.
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Examples

Web App
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State-of-the-art

(A): Frequency (B): Similarity

Two main families of algorithms:

Frequency-based: algorithms identify sets of subsequences that
represent the most frequently repeated patterns.

Similarity-based: algorithms identify sets of subsequences that
represent repeated patterns with minimal variability between
occurrences, regardless of frequency.

Observation: Most algorithms rely on three core parameters: the
number of motifs, the motif length, and a similarity threshold.
: In practice, the setting often results from a trial-and-error strategy.
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Scientific challenges

The choice of methods faces several challenges:

There is no unanimity on how to formally define a motif.

How do you identify the number of patterns and the length of
their occurrences?

Pattern occurrences may have different lengths.

Lack of metrics to assess method performance.

Figure: Time series with 2 patterns of variable lengths.
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Setting up of a benchmark

Setting up a benchmark for pattern detection in time series.

State of the art of the task, taxonomy of methods according to
their nature and strengths.

Formalization of metrics for the task.

Setting up a large dataset, pre-processed and adapted to the task.

Performance testing of 12 algorithms, representatives of the state
of the art, on real data.

Setting up experiments to identify the strengths of each algorithm.

Question of major interest which we do not answer in this work:
How can these methods be adapted to the search of patterns in
multivariate time series ?
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Experiment: comparison with state-of-the-art

Protocol:

task: motif set discovery

datasets: 6 real-worlds, 3
synthetics

metrics: f1-score

algorithms: PEPA, A-PEPA
(adaptative version), and 6
competitors.

Figure: Critical difference diagram (f1-score based rank, Friedman’s test &
Nemenyi post-hoc test). PEPA and A-PEPA performs significantly better than
other algorithms.
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Shape-based clustering

Definition

Grouping time series with similar shape together.

Hypothesis:

Clustering at the sequence level

Time warping made possible
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Dynamic Time Warping distance (DTW)

Definition

Dynamic Time Warping (DTW) is a distance function that is invariant to
time parametrization.

Main idea

DTW learns the alignment between two curves before computing the
euclidean distance between realigned curves.

: Computing DTW-Fréchet means is possible and leads to a
Kmean-DTW algorithm.
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An application example: Mice breathing behavior analysis

Objective

From plethysmogram signals exploring mice breathing behavior changes
when exposed to irritant molecules.

A B

C
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An application example: Mice breathing behavior analysis

Benefits:

Fast to compute

Ease experiment interpretation.

Symbolic representation suited for changed point or anomaly
detection.

Limitations

Invariance to time warping is to strong, need to quantify
deformations between respiratory cycles.
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An adaptation of LDDMM to time series.

Main idea

Time series are represented by deformations of a reference time
series. The deformations are parameterized diffeomorphisms.

Once the deformations and the reference time series are learned, the
vectorized representation of individual time series is given by the
parametrization of their corresponding deformation.

Benefits

Vectorized representation of time series (irregularly sampled, variable
length, and multivariate)

Interpretable methods

Possibility to perform machine learning methods and Kernel-SVM,
Kernel-PCA.
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Thank you!
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From time series to graph

Aim: Map a time series S = (s1, . . . , sn) ∈ Rn into an undirected
weighted graph GK

S = (V ,E ).

Graph specification

Vertices: V = (Sw
i )i=1...n−w+1, subsequences of length l of S

Edges: E = E1 ∪ E2, union of two edges sets:

Similarity set: each subsequence Sw
i is connected to its K most

similar non-overlapping subsequences.

E1 =
n−w+1⋃

i=1

{(
Sw
i ,N

k
i , d

k
i

)
| k = 1, . . . ,K

}
, (1)

Time set: edges connecting time adjacent subsequences.

E2 =
n−w⋃
i=1

{(Sw
i , S

w
i+1,max

(
d1
i , d

1
i+1

)
}. (2)
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Distance between subsequences
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Definition (LT-normalized Euclidean distance)

The LT-normalized (Euclidean) distance between x ∈ Rw and y ∈ Rw is:

dLT (x , y) =

∥∥∥∥∥ x − (αxt+ βx1)

∥x − (αxt+ βx1)∥
− y − (αy t+ βy1)

∥y − (αy t+ βy1)∥

∥∥∥∥∥
where t = (0, . . . ,w − 1), 1 = (1, . . . , 1) ∈ Rw and (αx , βx) are solutions
of the linear regression problem argmin

(a,b)∈R2

∥x − (at+ b1)∥2.
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Distance between subsequences

Subsequence Electrocardiogram

Sequence location
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Let α ∈ R∗
+ and β ∈]0, 2[, the (α, β)-rectified

distance between x ∈ Rw and y ∈ Rw is:

dα,β(x , y) = 2fα,β(dLT (x , y))/fα,β(2)

with
fα,β(x) =

√
tanh(αβ2) + tanh(α(x2 − β2))
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Graph computation complexity

For any time series S ∈ Rn, the graph GK
S is computed in O(Kn2).
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Graph clustering through persistent homology

Some properties:

All nodes (subsequences) have
birth and death dates.

Births and deaths are tracked
with an algorithm similar to the
Kruskall’s algorithm for
computing the minimum
spanning tree (MST).

The filtration of GK
S can be

reduced to the filtration of its
MST.
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Parameter heuristics
Birth cut:
Otsu method: the cut maximizes
the inter-class variance.

Persistence cut:
Fixed cut: the number of motifs is
given.
Adaptive cut: based on the
persistence gap.

Distance parameter (α, β):
For any α ∈ R+ and β ∈]0, 2[, fα,β
is bijective on [0, 2] and strictly
increasing.
Thus, edges’ weight order is
preserved while their value changes
when fα,β is modified: the filtration
and the MST are preserved.
The optimization criteria is given by:

argmin
α,β

DC .S(Bα,β ,U[0,2])

where DC .S is the Cauchy-Schwartz
divergence, and Bα,β is the kernel
density estimation of vertices’ birth,
and U[0,2] is the density of the
uniform distribution on [0, 2].
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Experiment: Influence of the subsequence length

Question: Does the subsequence length parameter affect the retrieval of
variable-length motif sets?
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