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Titre : Détection et analyse de formes pour les séries temporelles physiologiques 

Mots clés  : apprentissage non supervisé, reconnaissance de formes, analyse de formes, 
séries temporelles 

Résumé : Les données temporelles sont courantes en recherche biomédicale et les formes 
récurrentes ou anormales qu'elles comportent constituent des variables essentielles pour 
mener des analyses statistiques. Par exemple, dans les électrocardiogrammes, la forme des 
battements de cœur peut varier selon l'état physiologique des sujets, ce qui en fait une 
variable décisive pour diagnostiquer des maladies cardiaques. En revanche, la comparaison 
de telles formes nécessite des outils mathématiques spécifiques situés entre l'apprentissage 
automatique pour les séries temporelles et de l'analyse des formes. 

Alors que la communauté d’analyse de formes s’est partiellement penchée sur les séries 
temporelles, les méthodes d'apprentissage en séries temporelles s’appuyant sur la notion de 
forme ont connu un succès dans diverses applications. Cette thèse vise à combiner les forces 
de ces deux domaines pour proposer des méthodes adaptées à l’analyse de données 
temporelles en recherche biomédicale. Une attention particulière sera accordée à 
l'interprétabilité des méthodes par le biais de rendus visuels des formes et des déformations, 
essentielles dans le dialogue entre données et chercheurs.  

La thèse est structurée en deux parties : la première se concentre sur la recherche et la 
découverte de formes dans des séries temporelles, tandis que la seconde se concentre sur la 
comparaison de formes. 

La première partie aborde le problème de la recherche ou de la découverte de formes dans 
de longues séries temporelles avec des distances indépendantes de certaines sources de 
variabilité modélisées par un groupe de déformations. Pour ce faire, une méthode générale 
de construction de distances invariantes par rapport au groupe de déformation est introduite. 
Ce cadre étend la distance Z-normalisée en permettant la personnalisation du groupe de 
déformations. Ces distances peuvent être intégrées dans des algorithmes pour la recherche 
ou la découverte de motifs sans perte d'efficacité. Un algorithme pour la découverte de 
motifs a aussi été développé. Il transforme une série temporelle en un graphique permettant 
l'identification de motifs récurrents. En tirant parti de l'interprétabilité et de l'efficacité de cet 
algorithme, une application interactive a été conçue pour faciliter la découverte de motifs. 

La deuxième partie se concentre sur la comparaison des formes à l'aide de déformations 
élastiques qui tiennent compte des paramétrisations temporelles. Les méthodes proposées 
s'inspirent de l'analyse des cycles respiratoires de souris afin d'identifier des modalités de 
ventilation et d'évaluer les changements respiratoires chez des souris de génotypes différents 
après exposition à une molécule affectant la respiration. Une première méthode compare les 
cycles respiratoires à l'aide d'un algorithme de clustering s’appuyant sur la distance Dynamic 
Time Warping. Conçus comme référence, les résultats expérimentaux montrent que les 
clusters reflètent des modalités de ventilation liées à des génotypes et à des réponses à 
l'exposition. La seconde méthode crée des représentations vectorielles de séries temporelles 
échantillonnées de manière irrégulière et de longueur variable par le vecteur paramétrant les 
déformations qui font correspondre une série temporelle de référence aux autres. Cette 
approche s'appuie sur une méthode d'analyse de formes nommée Large Deformation 
Diffeomorphic Metric Mapping (LDDMM). Celle-ci est modifiée pour maintenir la structure 
spatio-temporelle des données tout en garantissant la bijectivité des représentations. Cette 
nouvelle méthode fournit des informations statistiques et visuelles sur les formes et les 
déformations. Une simple analyse statistique révèle que les déformations les plus 
importantes ont une signification physiologique permettant de mieux comprendre les 
modalités de ventilation selon le génotype et l'exposition. 
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Title : Pattern detection and shape analysis for physiological time series 

Keywords : unsupervised learning, pattern detection, shape analysis, time series 

Abstract : Time series are prevalent in biomedical applications where they frequently display 
recurring or abnormal patterns that hold significant information for statistical analysis. A 
notable example is the heartbeat in electrocardiograms, a recurring pattern whose shape can 
vary depending on the underlying condition, making it an important feature for diagnosing 
heart-related diseases. However, comparing such patterns requires specialized mathematical 
tools lying at the intersection between machine learning for time series and shape analysis. 

While the shape analysis community has partially addressed the case of time series, shape-
related approaches from machine learning for time series have achieved great success in 
various applications. This thesis aims to combine the strengths of both fields to propose 
methods suitable for biomedical research depending on temporal data. Particular attention 
will be given to methods’ interpretability through visual interpretation of patterns and 
deformations, as it is key for meaningful interaction between the data and biomedical 
researchers.  

The thesis is structured into two parts: the first focuses on searching for and discovering 
valuable patterns in time series, while the second concentrates on pattern comparison. 

The first part tackles the challenge of searching or discovering patterns in long time series 
with distances independent of some irrelevant sources of variability modeled with a group of 
deformations. To that end, a general framework for constructing deformation-invariant 
distances is introduced. This framework extends the well-known Z-normalized Euclidean 
distance, invariant to amplitude scaling and offset shifts, by allowing customization of the 
group of deformations. The custom distances can be integrated into state-of-the-art 
algorithms for similarity search and motif discovery without efficiency loss. Additionally, an 
interpretable and interactive algorithm for motif discovery has been developed. This 
algorithm maps a time series onto a graph which is then summarized into a diagram 
providing a visual interpretation that facilitates the identification of recurring patterns. 
Furthermore, an interactive application has been designed for biomedical researchers, 
leveraging the algorithm’s interpretability and efficiency for effective motif discovery. 

The second part focuses on comparing temporal patterns using elastic deformations that 
notably account for time warping. The proposed methods are driven by the analysis of mice 
respiratory cycles recorded via plethysmography to identify ventilation modalities and assess 
the respiratory changes in mice with different genotypes after exposure to a drug affecting 
respiration. The first method compares respiratory cycles with a clustering algorithm based 
on the Dynamic Time Warping distance. Designed as a baseline, experimental results show 
that clusters have physiological relevance, reflecting genotype-specific ventilation modalities 
and responses to drug exposure. The second method creates fixed-size vector 
representations of irregularly sampled and variable-length time series by the vector 
parametrizing the deformations that map a reference time series to the observed ones. This 
approach draws on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) 
framework from shape analysis, which is refined to maintain the spatiotemporal structure of 
the deformed time series while ensuring the bijectivity of the embedding. This method 
provides both statistical insights and visual interpretations of shapes and deformations. A 
simple statistical analysis reveals that the deformations responsible for most variability carry 
physiological significance, offering insights into ventilation modalities with respect to 
genotype and drug exposure effects. 
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Résumé (en français)

Les données temporelles sont courantes en recherche biomédicale et les formes récurrentes
ou anormales qu’elles comportent constituent des variables essentielles pour mener des
analyses statistiques. Par exemple, dans les électrocardiogrammes, la forme des battements
de cœur peut varier selon l’état physiologique des sujets, ce qui en fait une variable décisive
pour diagnostiquer des maladies cardiaques. En revanche, la comparaison de telles formes
nécessite des outils mathématiques spécifiques situés entre l’apprentissage automatique
pour les séries temporelles et de l’analyse des formes.

Alors que la communauté d’analyse de formes s’est partiellement penchée sur les
séries temporelles, les méthodes d’apprentissage en séries temporelles s’appuyant sur
la notion de forme ont connu un succès dans diverses applications. Cette thèse vise
à combiner les forces de ces deux domaines pour proposer des méthodes adaptées à
l’analyse de données temporelles en recherche biomédicale. Une attention particulière
sera accordée à l’interprétabilité des méthodes par le biais de rendus visuels des formes et
des déformations, essentielles dans le dialogue entre données et chercheurs.

La thèse est structurée en deux parties : la première se concentre sur la recherche et
la découverte de formes dans des séries temporelles, tandis que la seconde se concentre
sur la comparaison de formes.

La première partie aborde le problème de la recherche ou de la découverte de formes
dans de longues séries temporelles avec des distances indépendantes de certaines sources
de variabilité modélisées par un groupe de déformations. Pour ce faire, une méthode
générale de construction de distances invariantes par rapport au groupe de déformation
est introduite. Ce cadre étend la distance Z-normalisée en permettant la personnalisation
du groupe de déformations. Ces distances peuvent être intégrées dans des algorithmes
pour la recherche ou la découverte de motifs sans perte d’efficacité. Un algorithme
pour la découverte de motifs a aussi été développé. Il transforme une série temporelle
en un graphique permettant l’identification de motifs récurrents. En tirant parti de
l’interprétabilité et de l’efficacité de cet algorithme, une application interactive a été
conçue pour faciliter la découverte de motifs.

La deuxième partie se concentre sur la comparaison des formes à l’aide de déformations
élastiques qui tiennent compte des paramétrisations temporelles. Les méthodes proposées
s’inspirent de l’analyse des cycles respiratoires de souris afin d’identifier des modalités
de ventilation et d’évaluer les changements respiratoires chez des souris de génotypes
différents après exposition à une molécule affectant la respiration. Une première méthode
compare les cycles respiratoires à l’aide d’un algorithme de clustering s’appuyant sur la
distance Dynamic Time Warping. Conçus comme référence, les résultats expérimentaux
montrent que les clusters reflètent des modalités de ventilation liées à des génotypes et à des
réponses à l’exposition. La seconde méthode crée des représentations vectorielles de séries
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temporelles échantillonnées de manière irrégulière et de longueur variable par le vecteur
paramétrant les déformations qui font correspondre une série temporelle de référence
aux autres. Cette approche s’appuie sur une méthode d’analyse de formes nommée
Large Deformation Diffeomorphic Metric Mapping (LDDMM). Celle-ci est modifiée pour
maintenir la structure spatio-temporelle des données tout en garantissant la bijectivité
des représentations. Cette nouvelle méthode fournit des informations statistiques et
visuelles sur les formes et les déformations. Une simple analyse statistique révèle que
les déformations les plus importantes ont une signification physiologique permettant de
mieux comprendre les modalités de ventilation selon le génotype et l’exposition.



Abstract

Time series are prevalent in biomedical applications where they frequently display re-
curring or abnormal patterns that hold significant information for statistical analysis.
A notable example is the heartbeat in electrocardiograms, a recurring pattern whose
shape can vary depending on the underlying condition, making it an important feature for
diagnosing heart-related diseases. However, comparing such patterns requires specialized
mathematical tools lying at the intersection between machine learning for time series and
shape analysis. While the shape analysis community has partially addressed the case of
time series, shape-related approaches from machine learning for time series have achieved
great success in various applications. This thesis aims to combine the strengths of both
fields to propose methods suitable for biomedical research depending on temporal data.
Particular attention will be given to methods’ interpretability through visual interpre-
tation of patterns and deformations, as it is key for meaningful interaction between the
data and biomedical researchers.

The thesis is structured into two parts: the first focuses on searching for and discovering
valuable patterns in time series, while the second concentrates on pattern comparison.

The first part tackles the challenge of searching or discovering patterns in long time
series with distances independent of some irrelevant sources of variability modeled with a
group of deformations. To that end, a general framework for constructing deformation-
invariant distances is introduced. This framework extends the well-known Z-normalized
Euclidean distance, invariant to amplitude scaling and offset shifts, by allowing cus-
tomization of the group of deformations. The custom distances can be integrated into
state-of-the-art algorithms for similarity search and motif discovery without efficiency
loss. Additionally, an interpretable and interactive algorithm for motif discovery has been
developed. This algorithm maps a time series onto a graph which is then summarized
into a diagram providing a visual interpretation that facilitates the identification of recur-
ring patterns. Furthermore, an interactive application has been designed for biomedical
researchers, leveraging the algorithm’s interpretability and efficiency for effective motif
discovery.

The second part focuses on comparing temporal patterns using elastic deformations
that notably account for time warping. The proposed methods are driven by the analysis
of mice respiratory cycles recorded via plethysmography to identify ventilation modali-
ties and assess the respiratory changes in mice with different genotypes after exposure
to a drug affecting respiration. The first method compares respiratory cycles with a
clustering algorithm based on the Dynamic Time Warping distance. Designed as a
baseline, experimental results show that clusters have physiological relevance, reflecting
genotype-specific ventilation modalities and responses to drug exposure. The second
method creates fixed-size vector representations of irregularly sampled and variable-length
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time series by the vector parametrizing the deformations that map a reference time series
to the observed ones. This approach draws on the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework from shape analysis, which is refined to maintain
the spatiotemporal structure of the deformed time series while ensuring the bijectivity of
the embedding. This method provides both statistical insights and visual interpretations
of shapes and deformations. A simple statistical analysis reveals that the deformations
responsible for most variability carry physiological significance, offering insights into
ventilation modalities with respect to genotype and drug exposure effects.



Glossary

f ∈ Cm(U,Rd) A m-continously differentiable function from the open U ⊂ Rn to Rd.
ϕ ∈ D(Rd) A diffeomorphism from Rd to Rd (see Chapter 6).

f ∈ L2(I,Rd, µ) Square integrable function from I ⊂ R to Rd for the measure µ.
f ∈ M(I,Rd) Borel measurable function from I ⊂ R to Rd.

s ∈ Rn×d Discrete time series of dimension d and length n.
sli ∈ Rl×d subsequence of length l starting at index i of the time series s ∈ Rn×d.
A-PEPA Adaptive PersistentPattern algorithm (see Chapter 3).

DTW Dynamic Time Warping. A distance between discrete time series
invariant to time parametrization (see Section 1.2.1).

ACh Acetylcholine. A neurotransmitter that is notably key for the media-
tion of muscle contraction and breathing regulation (see Section 4.2).

AChE Acetylcholinesterase. An enzyme that terminates a signal transmis-
sion by destroying ACh by hydrolysis (see Section 4.2).

BChE Butyrylcholinesterase. An enzyme closely related to AChE that is
also capable of hydrolyzing ACh (see Section 4.2).

CNS Central Nervous System.
DCP Double Chamber Plethysmogram (see Section 4.1).
ECG Electrocardiogram.
EEG Electroencephalogram.
FFT Fast Fourier Transform. An algorithm to compute the Discrete

Fourier Transform (DFT).
K-NN A graph that connects each vertice to its K Nearest Neighbors (see

Section 2.1.3).
LDDMM Large Deformation Diffeomorphic Metric Mapping. A framework

from shape analysis (see Chapter 6)
LT Linear Trend (see Section 2.3).

NMJ Neuromuscular Junction (see Section 4.2)
PEPA PersistentPattern algorithm (see Chapter 3).

PNS Peripheral Nervous System.
PPG Photoplethysmogram.
PVC Heartbeat anomaly: Premature Ventricular Contraction.

RKHS Reproducible Kernel Hilbert Space.
TS-LDDMM Acronym of the unsupervised representation algorithm for irregularly

sampled and variable length time series presented in Chapter 6.
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Chapter 1

Introduction

Key points:

1. Time series data, common in biomedical applications, often exhibit recurring
or abnormal deterministic patterns that are valuable for statistical analysis
due to their consistent appearance across different subjects. However, effec-
tively utilizing these patterns requires appropriate mathematical tools for
precise comparison.

2. The comparison of temporal patterns lies at the intersection of machine
learning for time series and shape analysis, where sources of variability are
modeled as deformations of a reference shape. However, the case of time series
has been partially dealt with shape analysis. In contrast, shape-related works
from machine learning for time series have shown great success, suggesting
that both communities could benefit from each other.

3. This thesis aims to leverage machine learning for time series and shape
analysis to propose methods suitable for biomedical research relying on
temporal data. Special emphasis is also placed on the visual interpretation
of patterns and deformations, which is crucial to many biomedical research.

Contributions:

1. A general framework for shape analysis is proposed, forming the foundation
for the subsequent chapters. This framework defines time series, the group
of deformations that can act on them, and how these deformations affect the
time series.

1
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1.1 Motivation

Analyzing experimental data to validate or refute hypotheses is a core principle of modern
science. This approach is especially prominent in biomedical research, where it drives
advancements in understanding biological structures and functions, developing novel
treatments, or improving diagnostics and medical practices to enhance human health.
Recent technological innovations have greatly facilitated the non-invasive acquisition of
biomedical data, with time series playing a particularly significant role [GKK20; Fer17].

For instance, electroencephalograms (EEG), as shown in Figure 1.1a, record the
electrical brain activity by placing electrodes around the skull. Among many other
applications, EEGs play an important role in diagnosing neurological disorders like
epilepsy or narcolepsy and in studying brain function in response to external stimuli
[SBH74]. Similarity Electrocardiogram (ECG), depicted in Figure 1.1b, measures the
heart’s electrical activity via electrodes placed on the body, aiding in the diagnosis of
several pathological heart conditions like arrhythmia or assessing the heart’s response to
various clinical treatments [Vic+19]. In contrast, gait signals, illustrated in Figure 1.1c,
monitor footsteps’ angular velocity with inertial measurement units, offering valuable
insights for the rehabilitation of patients with reduced mobility due to conditions such as
Parkinson’s disease or stroke [Bar+15].

With human health at stake, biomedical data analysis requires mathematically founded
and statistically grounded tools to facilitate meaningful interactions between the data
and biomedical researchers or practitioners.

Structured data. Biomedical time series often exhibit deterministic patterns that
reflect the subject’s physiological state. For example, specific EEG waveforms, such as
K-complexes (sharp peaks) and sleep spindles (sinusoidal patterns), are characteristic of
the second stage of sleep, as shown in Figure 1.2a. Similarly, the shape of heartbeats
recorded by ECG can be altered by conditions like premature ventricular contractions
(PVC), Figure 1.2b. Gait signals also vary between healthy individuals and those affected
by neurological disorders Figure 1.2c.

These recurring patterns are valuable in biomedical research as they are consistently
observed across different subjects, making them robust features for statistical analysis.
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Figure 1.1 Illustrations of non-invasive biomedical time series. (a) Electroencephalogram (EEG)
measuring brain’s electrical activity with electrodes, (b) Electrocardiogram (ECG) measuring
heart’s electrical activity, and (c) Gait signal measuring footsteps’ angular speed with inertial
measurement unit.

However, effectively leveraging these patterns requires appropriate mathematical tools for
accurate comparison.

Features on shapes. Interestingly, comparing such deterministic patterns boils down to
comparing their shape. Historically, it has been done by comparing handcrafted features
extracted from patterns, as illustrated in the case of heartbeats in Figure 1.3. However,
such features tend to be precise and localized, which may lead to the loss of discriminative
information. More recently, machine learning and deep learning algorithms have been
used to learn features directly from the data. However, these methods often require large
datasets, an unaffordable luxury in some biomedical contexts. Additionally, ensuring the
reliability and interpretability of learned features is an active area of research that is
essential in biomedical research.

While the first approach risks being overly reductionist, and the second tends to
over-parameterize, a third approach leveraging the notion of shape in patterns could be
investigated to address both limitations.

Shape & time series. The shape analysis community has laid out a mathematical
framework for studying the shapes of geometric objects, where the concepts of shape and
deformation are deeply interconnected. For example, a piece of paper can be deformed by
folding or unfolding it. Separating the object from its deformations leads to two analytical
approaches:
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(a) EEG (b) ECG (c) Gait

Neurological

Healthy

PVC

HealthySleep spindle

K-complex

Figure 1.2 Illustrations of deterministic patterns. (a) In EEG, K-complex and sleep spindles
indicate a stage 2 sleep. (b) In ECG, heartbeats of subjects suffering from premature ventricular
contraction (PVC) have a different profile compared to healthy subjects. (c) In gait signal, the
footstep of a subject with a neurological pathology differs from that of a healthy subject.

(a) (b)

Figure 1.3 From [Mar+17]. Illustrations of standard features for describing heartbeat’s shape
from ECG toward automatic classification of ventricular premature and ischemic heartbeats. It
includes features accounting for (a) duration of specific intervals and amplitude of some peaks,
(b) area under the curve on specific intervals.

1. Comparing objects independently of the deformations. For instance, in-
dependently of folding, a plane paper and a folded paper are considered the same
object.

2. Comparing objects by quantifying the deformations. For instance, a paper
folded 4 times and a plane paper differ by 4 folds.

Compared to earlier approaches, shape analysis adjusts the complexity of the problem
by incorporating expert knowledge into the design of the deformation set. Deformations
are carefully selected to account for meaningful sources of variability, ensuring that
deformation-invariant features or deformations have biological significance.

While shape analysis primarily focuses on medical imaging to compare organs and
tissues under spatial deformations, its application to time series (spatiotemporal data)
remains relatively unexplored. Despite this, shape-based methods have demonstrated
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significant success in tasks such as classification and clustering for time series. These
methods typically rely on distances invariant to common time series deformations, such
as amplitude scaling, offset shifts, and time warping, as illustrated in Figure 1.4.

Deformed
Original

(a) Amplitude scaling (b) Offset shift (c) Time warping

Figure 1.4 Illustrated on a heartbeat from ECG of common time series deformations including
(a) amplitude scaling, (b) offset shift, and (c) time warping.

Thesis positioning. This thesis has been conducted at the Centre Borelli1, a multidisci-
plinary research laboratory that brings together experts from various fields, including
mathematics, computer science, neuroscience, biology, medicine, and clinical practice.
This thesis aims to leverage machine learning for time series and shape analysis to propose
methods suitable for biomedical research relying on temporal data. Special emphasis is
also placed on the visual interpretation of patterns and deformations, which is crucial to
many biomedical research.

Usecases. This thesis is divided into two parts. The first part focuses on querying
specific patterns or discovering recurrent patterns in a long time series, independent of
some predefined deformations. Intended as handy methods, they are tested on several
biomedical temporal data, including ECG and EEG.

The second part focuses on unsupervised shape-based embedding methods for time
series datasets. The development of such methods is motivated by research conducted at
Centre Borelli to understand better the role of an enzyme in the regulation of respiration
[Ner+19]. A detailed description of this research is provided in Chapter 4.

Situated at the intersection of machine learning for time series and shape analysis, the
following section provides an overview of both research communities and the mathematical
foundations necessary for applying shape analysis to time series.

1.2 At a crossroads

1.2.1 Machine learning for time series

Time series are everywhere. Times series appears in numerous fields of applications
and raises diverse challenges. Among many examples outside of the biomedical field,

1https://centreborelli.ens-paris-saclay.fr/en

https://centreborelli.ens-paris-saclay.fr/en
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astronomers are interested in classifying billions of astronomical objects from massive
datasets of photometric time series [JB20; Lin+12]. Seismologists aim at predicting
upcoming earthquakes from real-time seismograms [BAM23]. Economists wish to detect
fraudulent market manipulation from time series of financial transactions [KG22; GZ15].
Industrials wish to streamline their supply chain by predicting sales [RLM21], controlling
their stock level [Avi03], or performing preventive maintenance [RBP11].

Facing such diversity of context and problems, researchers in machine learning for time
series have organized their work around transversal tasks like classification or forecasting,
as well as core criteria to evaluate methods.

Core criteria. Looking at the literature, algorithms are commonly evaluated with three
criteria that englobe challenges encountered in most applications:

• Efficiency: Dealing with potentially large datasets of long time series, algorithms
should be efficient both in computational time and memory usage.

• Interpretability: Steamed by applications in fields like industry or medicine,
where algorithmic decisions may alter human health and well-being, algorithms
should come with guarantees, notably in interpretability where the algorithm’s
output can be explained from the input data.

• Performances: To motivate the creation of algorithms that perform well across mul-
tiple application fields, researchers have established task-dependent metrics [SR24;
JPJ24; Tat+18] and datasets [Pap+22a; God+21; Dau+19; Bag+18].

The proposed algorithms will be evaluated throughout the thesis in light of these criteria.

Transversal tasks. In several applications, the same tasks must be resolved, and many
researchers in the time series community have focused their work around them [EA12b;
Fu11]. In what follows, short descriptions of the most prevalent tasks are given:

• Anomaly detection [SWP22]: Detecting abnormal parts in a time series. The
normal/abnormal behavior can be learned with or without supervision.

• Classification [Bag+17]: Predicting a time series class by training an algorithm
with a paired label/time series dataset.

• Clustering [ASW15]: Grouping time series in homogeneous sets according to a
similarity measure and without supervision.

• Embedding [Li+17]: Reducing the dimension of time series in time or space to
gain performance and efficiency on downstream tasks.

• Forecasting [LZ21]: Predicting the future from past observations and relying on
statistical properties of the underlying process.

• Motif discovery [TL17]: Detecting and locating local patterns that repeat
themselves in a time series.
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• Segmentation [TOV20]: Dividing a time series into homogeneous segments based
on a measure of similarity or supervised training.

• Similarity search [Pat+02]: Querying a single time series or a dataset in search
for occurrences of a given pattern in a time series.

In this thesis, contributions have been made to the task of similarity search in Chapter 2,
motif discovery in Chapter 3, and embedding in Chapters 5 and 6.

Two scales. Most tasks related to time series are on one of two different scales. Some
tasks like clustering focus on the global scale; they compare time series belonging to a
dataset. Others, like motif discovery, focus on the local scale; they search for local events
in a single long time series. In some situations, the task refers to both scales. For instance,
anomaly detection refers to the detection of anomalous time series in a dataset and the
detection of local anomalous events in a time series. Table 1.1 details the scale at which
each task operates.

In addition, it is possible to pass from a local scale task to a global one with a proper
segmentation algorithm. For instance, with an algorithm for segmenting heartbeats
(Figure 1.2b), an ECG (Figure 1.1b) can be decomposed in a dataset of individual
heartbeats, and thus comparable with global scale methods.

In this thesis, Part I focuses on local scale tasks, and Part II focuses on global scale
tasks.

Table 1.1 Operating scale of common tasks on time series

Task Local Global

Anomaly detection ✓ ✓

Classification ✓

Clustering ✓

Embedding ✓

Forecasting ✓

Motif Discovery ✓

Segmentation ✓

Similarity search ✓ ✓

The distance jungle. Most algorithms that address the abovementioned tasks rely on
distances between time series. As they are easily interchangeable, numerous distances
have been proposed to improve performance in various contexts. Facing the distance
jungle, researchers have led several experimental evaluations over the years [HMB24;
Pap+20; AML19; Din+08]. For instance, a recent study compares 71 distances over 128
datasets [Pap+20]. The majority of the distances fall into two families:

• Lock-step distances: They compare time series of equal length and assume
a one-to-one pairing between samples. They are known for their computational
efficiency.
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• Elastic distances: They can compare time series of different lengths, and given a
distance between samples, they find the optimal pairing that minimizes the overall
distance. They are known for their robustness to time warping.

In this thesis, contributions to both families have been made and are presented in Chapter 2
for lock-step distances and Chapter 6 for elastic ones.

Shape-based distances stand out. Among all distances, two are well established and
considered as the baseline distance by many algorithms: The Z-normalized Euclidean
distance [GK95] and the dynamic time warping distance (DTW) [SC78]. Both distances
are, in fact, shape-based distances, meaning that they compare time series independently
of some deformations.

Belonging to the lock-step family, the Z-normalized Euclidean distance is invariant to
scale and offset deformations Figure 1.4ab. While basic, these deformations are pervasive
in time series, and invariance becomes crucial in many applications. The Z-normalized
Euclidean distance between x ∈ Rn and y ∈ Rn is defined by:

dZ(x,y) =

∥∥∥∥
x− µx1

σx
− y − µy1

σy

∥∥∥∥ , (1.1)

with µx = 1
n

∑n
i=1 xi, σ2

x = 1
n

∑n
i=1(xi − µx)

2, and 1 = (1, . . . , 1) ∈ Rn. Treated as
Gaussian samples, mean and standard deviation are withdrawn from the samples so that
the time series becomes invariant to the offset and scale deformations. The Z-normalized
distance benefits from an efficient computation [ZM24] and has shown great success,
especially in similarity search and motif discovery [ZM24; Yeh+16].

Belonging to the elastic family, the DTW is invariant to a common source of inter-
individual variability: the time parametrization of the time series Figure 1.4c. In its
original form [SC78], the DTW between x ∈ Rm and y ∈ Rn is defined by:

dtw(x,y) = min
A∈Am,n

⟨A,∆⟩F , where: ∆ij = ∥xi − yj∥2 , (1.2)

with Am,n ⊂ {0, 1}m×n the set of path matrices that connect the top-left corner to the
bottom-right corner [CB17]. Many variants of the DTW have been proposed over the
years, among which some intend to improve its robustness to noise [ZI18; CB17]. Recently,
the DTW has been combined with optimal transport for comparing time series with
heterogeneous output spaces to address the issue of domain adaptation while ensuring
time warping invariance [Pai+23; Coh+21; JCG20]. Similarly, a recent work [Vay+20]
has proposed a DTW-based distance also invariant to global deformations belonging to
Stiefel manifolds. For instance, this distance is well suited to compare time series of
motion recordings where the camera angle may differ between recordings. Note that it is
not a metric as it does not guarantee the triangular inequality, and it is also quadratic
in computation time. However, DTW-based distances are performant in many tasks on
short time series datasets [Wan+13].

Showing great success, shape-based distances are a primer choice for many applications.
However, the notion of shape in time series has not been explored to its fullness, and
further improvements are still possible by taking on the shape analysis literature.
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1.2.2 Shape analysis

Comparing shape. Shape analysis refers to methods that compare geometrical objects
like surfaces or curves with special attention to modeling the inter-object variability. As
illustrated in Figure 1.5, first applications were in biology [DM16], where researchers
were interested in anatomical differences between species independently to some source of
variability modeled by dilations, translations, or rotations. Such analysis is known as the
Ordinary Procruste analysis [HC62].

Figure 1.5 From [Kli15], the shapes of insect wings are compared through Ordinary Procrustes
analysis. (a) both wings are scaled to the same scale, removing the dilatation variability,
(b) barycenter of both wings is translated to the neutral, removing translation variability, and
(c) both wings are rotated to the same orientation, removing the rotation variability. Finally, the
shape distance between wings is the sum of Euclidean distance paired landmarks.

Toward statistical metohds. More recently, shape analysis has been applied in
fields like computer vision [Wei18; WM18; You12], medical imaging [Sto+24; Dub+18;
Mor+08], or computational anatomy [Gas+22; MTY02; GM98] where statistical methods
play a central role in the scientific process. For instance, several studies have focused
on the relationship between the shape of the Hippocampus shape and Alzheimer’s
disease [Wen+20; Chu+09; Wan+07], and others to the relation between the heart shape
and some malfunctions [Gua+24; Man+11; Hel+05].

Unfortunately, classical statistical methods are unsuited to shape spaces as shape
spaces are generally not endowed with a vectorial structure. For instance, the pixel-wise
sum of two brain MRI does not results in a brain MRI. The development of statistical
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methods dedicated to shape spaces has become an active research topic over the past two
decades [Fey20].

Metric on shape space. While defining a suitable vectorial structure on a shape
space is challenging, quantifying the difference between shapes is easier. A large body of
work has been focusing on defining metric structure on shape spaces which are evaluated
around three criteria:

• Relevance to the application field: Encompass source of variability according
to their effect on shapes.

• Mathematically founded: Inherit mathematical properties relevant for down-
stream methods, notably statistical ones.

• Computationally efficient: Scalable to large dataset.

Deformation and group action. A conceptual approach to define metric on shape
space has been introduced [Gre94]. Specifically, sources of variabilities are modeled as
deformations of the ambient space in which the geometrical objects belong. The set of
deformations is endowed with a group structure, and its action on the geometrical objects
is described with a group action.

Definition 1 (Group action). A group G with neutral e acts on the left on a set M, if
there exists a map a : G×M 7→ M that verifies:

1) a(e,m) = m, ∀m ∈ M

2) a(g, a(h,m)) = a(gh,m), ∀(g, h) ∈ G2, ∀m ∈ M.

Remark 1. The right action can also be defined; it suffices to replace the second property
with a(g, a(h,m)) = a(hg,m). To simplify notations, left (resp. right) actions are denoted
g ×m 7→ g ·m (resp. g ×m 7→ m · g).

For a group G that acts on the left on a set M, the orbit of an element m ∈ M is the
set [m] = {g ·m | g ∈ G}. The action of G on M is said transitive if for any m ∈ M its
orbit is the whole set: [m] = M. Different strategies to define metrics should be considered
depending on whether or not the transitivity property holds.

Nontransitive action. For nontransitive actions, distances are designed to compare
shapes independently to the set of deformations. Formally, the set of independent orbits,
denoted M/G, called quotient space, is not reduced to a singleton. Each orbit represents
a shape, and the quotient space M/G must be equipped with a metric structure.

Theorem 1. Let (M, d) be a metric space and G a group that acts nontransitively on the
left on M. The function d̃ defined by:

d̃([m], [m′]) = inf
(g,g′)∈G2

d(g ·m, g′ ·m′)
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is a metric on M/G, if the orbits are closed subset of M for the topology induced by d.
In addition, if d is G-equivariant, ie d(g ·m, g ·m′) = d(m,m′), d̃ also verifies:

d̃([m], [m′]) = inf
g∈G

d(m, g ·m′)

Proof. See chapter 12 from Shapes and diffeomorphisms, [You10].

Example 1 (Rotation and translation invariance). A distance invariant to rotation and
translation is a straightforward application of Theorem 1.

Formally, suppose two set of paired landmarks x = (x1, . . . ,xN ) and y = (y1, . . . ,yN )
living in the ambient space Rd. The objects x and y belong to the same orbit if there
exists a rotation R ∈ SO(d) and a translation τ ∈ Rd such that:

y = Rx+ τ i.e. ∀i ∈ [[1, N ]], yi = Rxi + τ. (1.3)

If x and y are not collapsed to a single point, by translation and rotation equivariance
of the Euclidean distance, the invariant distance is defined as:

dRT (x,y) = inf
(R1,τ1,R2,τ2)

∥(R1x+ τ1)− (R2y + τ2)∥ = inf
(R,τ)
∥(Rx+ τ)− y∥ (1.4)

Example 2 (Time parametrization invariance: the Square Root Velocity (SRV) frame-
work). Originating from shape analysis, the Square Root Velocity framework [Sri+10]
aims to compare curves independently of their time parametrization. It proposes a distance
invariant to time parametrization built through the strategy of Theorem 1.

Formally, let M ⊂ L2([0, 1],Rd) be the set of integrable open curves that are differ-
entiable, with a first derivative also integrable, and such that for any c ∈ M, c(0) = 0.
The goal is to define a distance between curves that is invariant to the action of the group
G = {γ ∈ C1([0, 1], [0, 1]) | γ(0) = 0, γ(1) = 1, γ′(t) > 0 ∀t}.

To that end, let consider the bijective embedding map F such that for any curve c ∈ M,
F (c) is the curve defined as:

F (c) : t 7→
{

c′(t)/
√
∥c′(t)∥, if c′(t) ̸= 0

0, else
, (1.5)

and the distance d on M:

d : (c1, c2) ∈ M×M 7→
∫ 1

0
∥F (c1)(t)− F (c2)(t)∥2dt , (1.6)

the distance d is G-equivariant, meaning that for any curves c1, c2 and time parametrization
γ, d(c1 ◦ γ, c2 ◦ γ) = d(c1, c2). According to Theorem 1, the application:

d̃ : ([c1], [c2]) ∈ M/G×M/G 7→ inf
γ∈G

∫ 1

0
∥F (c1 ◦ γ)(t)− F (c2)(t)∥2dt , (1.7)

is a pseudo-distance that compares curves up to their time parametrization, and with some
technical considerations [Sri+10], it defines a distance on M/G.
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Transitive action. With transitive action, it is always possible to find a deformation
that maps one geometrical object to the other. The deformation deforms the ambient
space of the first object to map it onto the second. The interest of transitive action lies in
the possibility of describing the transformation of one object to another at a global or a
local scale and for any point of the ambient space. Unfortunately, the strategy described
in the nontransitive case is not transferable to the current case. However, defining a
distance on the shape space M is still possible if the group G can be endowed with a
metric structure. Intuitively, distances defined through the following theorem quantify
"how much" the source object has to be deformed to be mapped on the target one.

Theorem 2. Let (G, e) be a group that acts transitively and on the left on the set M. If
dG is a right-equivariant metric on G, ie dG(gh, g

′h) = dG(g, g
′), then d̃ defined by:

d̃(m,m′) = inf
g∈G
{dG(e, g) | g ·m = m′}

is a metric on M if {g ∈ G | g ·m0 = m0} is closed for the topology induced by dG and for
a fixed m0 ∈ M.

Proof. See chapter 12 from Shapes and diffeomorphisms, [You10].

Rooted in the work of the biomathematician D’Arcy Thompson [Tho17] who first
described the mapping from one species to another through a geometrical deformation, see
Figure 1.6a, the group of diffeomorphisms has received particular attention in shape anal-
ysis for transitive actions. Intuitively, diffeomorphisms are smooth bijective applications
with a smooth inverse. Such deformations can be generated through ordinary differential
equations, making the distances induced by this group relevant for any biomedical appli-
cation where the deformation of a shape evolves smoothly across time. For instance, a
child’s brain forms smoothly during pregnancy, see Figure 1.6b; the brain shape evolution
can be compared at a population level to provide valuable information to clinicians and
counseling to the parents [GBA21].

Time series are not curves. Time series and curve refer to the same mathematical
object: an application from a closed interval I ⊂ R taking value in a space E. However,
the difference comes from the challenges raised by diverse application fields that are dealt
with by two different communities.

Steamed by applications in computer vision or medical imaging, curves often refer to
detoured objects, see Figure 1.7a, and have been widely studied in shape analysis [Bau+21;
You10]. Here, the temporal aspect of curves simply refers to the parametrization of the
detoured object and does not carry any meaningful information. Therefore, all curves are
defined on the same closed interval I, and the focus is on comparing the shape of curves
independently of any time parametrization.

To oppose time series to curves, let us consider a practical example. Bradycardia
is a disease where subjects have an abnormally low heartbeat rate, causing oxygen
deficiency. The difference between healthy and unhealthy subjects can be seen from
electrocardiograms (ECG), see Figure 1.7b. Compared to healthy subjects, the heart
cycle of subjects suffering from bradycardia presents a long pause at the end of the
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(a) Fish mapping, from [Tho17]. (b) Child brain development, from [KF09].

Figure 1.6 (a) Fish on the top-left corner is deformed to map other fishes. The underlying
assumption of D’Arcy Thompson is that deformations between closely related species should be
"small". (b) A schematic description of a child’s brain development during pregnancy. Failure to
develop certain parts of the child’s brain during pregnancy can lead to cognitive malfunction.
Detecting such abnormalities and differentiating them from potential developmental delays is
crucial to clinicians [GBA21].

heart contraction. Surprisingly, healthy and unhealthy patient cycles are identical when
compared independently of any time parametrization. The discriminative information
resides in the time parametrization of the heart’s cycle, which should be included in the
notion of shape for time series.

The previous example shows that a straightforward application of methods designed
for curves to time series is restrictive in some situations. On the other hand, the large
and fruitful body of work around the notion of shape needs to be added to the time series
community. This remark motivates the positioning of this thesis to extend some notion
of shape analysis to the context of time series.

1.2.3 A general framework for shape analysis on time series

According to the previous section, three things must be defined in order to establish a
notion of shape: a set of geometrical objects, a group of deformations and the action of
the group on the set. The following paragraphs present these sets and the action in the
context of time series and in the most generic way possible. The definition of shape-based
metrics will be the focus of the next chapters where the generic framework will be declined
to more specific cases.

Time series representation. Looking at the literature [Bau+21; Wil17], time series
are commonly represented in two ways:
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(a) Brain MRIs, from [Bha+18] (b) ECGs, from Cleveland clinic website

Figure 1.7 (a) Curves representing detoured brain tumors from MRIs. (b) Electrocardiogram
(ECG) difference between a healthy subject and a subject suffering from bradycardia, a disease
where the heart has a slow contraction rate. While hearts’ contractions are identical, heartbeats’
cycles have long pauses after contraction in bradycardia. At the scale of individual heartbeat
cycles, methods for comparing curves independently of time parametrization won’t be able
to differentiate healthy subjects from subjects suffering from bradycardia. From the website:
https://my.clevelandclinic.org/health/diseases/17841-bradycardia.

• The functional representation: A time series is a function f from a closed
interval I ⊂ R taking value in Rd.

• The discrete representation: A time series is a sequence (f(t1), . . . , f(tn)) ∈
Rn×d sampled at time t1 < . . . < tn ∈ I.

While the functional representation of a time series is exact, its discrete counterpart is an
approximation whose error depends on the sampling. Going toward shape analysis, the
functional representation of time series is more appealing to the mathematician as it is
exact and prevents the trouble of dealing with sampling. However, we only have access to
discrete time series representations in practice. It motivates the need for bridges between
functional and discrete representation to merge the gap between theory and applications.

This thesis will mainly consider the functional representation to define shape-based
distances between time series. Additionally, efforts will be made to decline such distances
to the discrete case and to provide some convergence guarantees to the exact distance as
the discretization gets refined.

Admissible set of time series. Compared to the set of curves that is the set of all
continuous functions from the same closed interval I ⊂ R to Rd, the admissible set of time
series differs in two ways. The continuity assumption should be revoked as it does not
hold in several application fields. For instance, the electrical consumption of appliances
often behaves like a binarized signal.

More importantly, the restriction of defining functions on the same closed interval I
should also be revoked. Indeed, going back to the bradycardia disease example, when
comparing heart cycles, the discriminative information resides in the time parametrization
and especially the length of the interval on which the function is defined.

https://my.clevelandclinic.org/health/diseases/17841-bradycardia
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The set of admissible time series should encompass such differences and can be defined
in the most general sense as the following union:

F = {(I, f) | I ∈ I and f ∈ M(I,Rd)} , (1.8)

where I is the set of closed intervals of R and M(I,Rd) is the set of Borel measurable
functions from I to Rd. Note that this large set encompasses most of the time series
encounters in applications. However, this set has little structure and the next chapters
will focus on subsets that present more structure to ease the definition of metrics.

Admissible group action for time series. Group actions have been introduced in
shape analysis to model the action of a deformation on a geometrical object. Looking
at a time series f : I 7→ Rd, a deformation that would make sense is a combination of
a distortion h : I 7→ Rd and a time parametrization γ : I 7→ J that would lead to the
deformed time series: g = (f + h) ◦ γ−1.

To properly define a group action on the admissible set of time series F, let us model the
distortions by the set of Borel measurable functions M(R,Rd) and the time parametrization
by the set of strictly increasing homeomorphisms H+(R). The set M(R,Rd)⋊H+(R) with
the composition rule: (h2, γ2)× (h1, γ1) = (h1 + h2 ◦ γ1, γ2 ◦ γ1) forms a group which can
act on F by the left action:

(h, γ) · (I, f) =
(
γ(I), (f + h) ◦ γ−1

)
. (1.9)

Note that this action is transitive, meaning that for any admissible time series (I, f) and
(J, g), there exists a deformation (h, γ) such that (h, γ) ·(I, f) = (J, g). Even more so, there
is a multitude of deformations that map (I, f) to (J, g) as for any time parametrization
γ, the distortion whose restriction on I is equal to g ◦ γ − f ensures the mapping. In
summary, this action on time series is very expressive and offers many ways to model
deformations relevant to applications.

In terms of notations, the group M(R,Rd) alone refers to rigid deformations, while
the groups H+(R) and M(R,Rd)⋊ H+(R) refers to elastic deformations.

Going back to the shape analysis literature, the admissible group action falls into
the notion of functional shape [CCT17; CT14], an emerging problem in computational
anatomy [MQ09].

Applications based simplification. Simplifying the admissible group action comes at
the cost of restricting the set of time series and deformations for the gain of additional
structure, which in turn allows the definition of shape-based distances. Depending on the
application, simplifications can be made following the two strategies:

• Invariance to a set of deformations: The goal is to compare time series
independently to some deformations like amplitude, offset, time parametrization,
and more. The simplification of the group action leads to a nontransitive action
which, according to Theorem 1, leads to a deformation-invariant metric if the set of
time series can be endowed with a metric equivariant to the group of deformations.
Such metrics will be explored in Chapter 2. Notably, It will be shown that this
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framework includes the well-established Z-normalized Euclidean distance (eq. (1.1))
as well as other appealing distances.

• Quantification of some meaningful deformations: The goal is to compare
time series by the deformation that maps one time series to the other. The group of
deformations is picked to carry meaning to the application, and the resulting group
action satisfies the transitivity property. According to Theorem 2, a deformation-
related metric between time series can be established if the group of deformations
can be endowed with a metric equivariant to itself. Such strategy will be explored
in Chapter 6 by deriving well-established methods from shape analysis to the case
of time series.

Conclusion. The previous paragraphs present a general framework for the shape analysis
on time series by leveraging an expressive group action on time series. Going to the
application side, two strategies have been presented to create shape-based metrics on time
series. This framework forms the foundations on top of which this thesis is conducted.

1.3 Thesis outline

The thesis is organized as follows:

Part I focuses on querying specific patterns or discovering recurrent patterns in a long
time series, independent of some predefined deformations. Specifically, it deals with local
scale tasks on time series, including similarity search and motif discovery, and addresses
invariance to predefined groups of rigid deformations.

• Chapter 2 tackles the problem of searching for occurrences (repetitions) of pre-
defined patterns within a single long time series. The first section reviews related
work on time series similarity search, with a particular focus on exact methods that
use lock-step distances. The algorithmic properties contributing to their efficiency
are detailed. Building on these properties, the second section introduces a general
framework for constructing distances invariant to user-defined sets of deformations
while ensuring equivalent computation time complexity as state-of-the-art meth-
ods. The final section applies this framework to develop a distance invariant to
amplitude scaling, offset shift, and linear trend. This distance proves valuable in
cases where time series are affected by trend-induced deformations, as demonstrated
experimentally.

• Chapter 3 introduces a novel algorithm for motif discovery. Following a comprehen-
sive review on motif discovery, the second section presents the proposed algorithm,
called PEPA, which enables the discovery of variable-length motifs. This algorithm
embeds a time series into a graph and uses persistent homology to summarize the
graph in a diagram. Motifs are then identified through a visual interpretation of
the diagram. Although PEPA requires the user to specify the number of motifs
to discover, an adaptive version, A-PEPA, is also presented, which uses a simple
heuristic to infer this number. The subsequent section evaluates the algorithm’s
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performance on a benchmark dataset developed during this thesis alongside ablation
studies. A web application is also presented, demonstrating how the algorithm’s
efficiency and visual interpretation can be used for interactive motif discovery.

Part II focuses on unsupervised shape-based embedding methods for time series
datasets. Specifically, this global scale task is addressed by considering groups of elastic
deformations that can either be restricted or quantified and embedded.

• Chapter 4 presents the biomedical application motivating the development of
the methods proposed in the subsequent chapters. Shortly, an enzyme plays
an important role in regulating muscle activity and signal transmission within
the nervous system. Some drugs inhibit the enzyme’s action, which has severe
consequences, notably on respiration, which are not yet fully understood. To
investigate inhibition consequences, the respiration of mice with different genotypes
exposed to inhibitors is monitored by plethysmography. The first section presents
the monitoring equipment material (plethysmogram), and highlights the limitations
of existing methods for analyzing such signals. Additionally, an algorithm for
segmenting plethysmography signals into datasets of respiratory cycles (inspiration
and expiration) is presented. The second section outlines the biological context and
experimental protocol.

• Chapter 5 presents, in the first section, a novel unsupervised baseline method
for analyzing plethysmography signals. This method uses a DTW-based clustering
algorithm to learn a symbolic embedding of respiratory cycles. The symbolization
of plethysmography signals results in sequences of shape-based symbols. The
following result and discussion illustrate, in particular, the interpretability of the
method by presenting correspondences between symbols and physiological functions.
Among several discoveries, the symbolic representations have highlighted genotype-
dependent respiration modalities and a heterogeneous physiological response to
inhibitor exposures.

• Chapter 6 presents an embedding method called TS-LDDMM, which represents a
time series by the vector that parameterizes the deformation mapping a reference
time series to the target one. This method is built on the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) framework from shape analysis, intro-
duced in the first section. LDDMM learns diffeomorphic deformations by solving
specific differential equations. The second section adapts LDDMM to time series
by establishing sufficient conditions on the differential system to ensure that the
learned deformations preserve the spatiotemporal structure of the time series. While
several benchmark comparisons and ablation studies are included in the appendices
for conciseness, the experimental section focuses on the mice ventilation study.
This section demonstrates how TS-LDDMM embeddings capture physiologically
meaningful deformations with improved interpretability by analyzing associated
statistical results. Specifically, TS-LDDMM embeddings helped to characterize
mouse genotypes, ventilation modalities, and the effects of inhibitor exposure.



18 Chapter 1. Introduction

1.4 Contributions

Chapter 2:

1. A general framework is introduced for constructing deformation-invariant distances
that can be integrated into state-of-the-art similarity search algorithms without
compromising efficiency. Specifically, when sources of variability can be modeled as
a group of deformations acting on time series as a vector subspace, a deformation-
invariant embedding can be created, where the distance between embeddings is
simply the Euclidean distance. This framework extends the well-known Z-normalized
Euclidean distance.

2. As an example, the LT-normalized Euclidean distance is proposed, invariant to
amplitude scaling, offset shift, and linear trend. This distance is locally robust
deformations caused by a trend, and it has shown great success in several biomedical
use cases.

Chapter 3:

1. This chapter introduces an algorithm called PersistentPattern (PEPA) for discovering
variable-length motifs without requiring prior knowledge of the similarity between
motif occurrences. PEPA works by embedding a time series into a graph and
summarizing it through persistent homology, a tool from topological data analysis,
which then allows the identification of relevant motifs from the graph’s summary.

2. An adaptive version of the algorithm that infers the number of motifs to discover
from the graph summary is also presented.

3. A benchmark of 9 labeled datasets, including 6 real-world datasets, is introduced for
motif discovery. Empirical evaluations show that PEPA significantly outperforms
state-of-the-art algorithms.

Chapter 4:

1. This chapter introduces a new algorithm for segmenting mice respiratory cycles
(inspiration and expiration) from plethysmography signals. By incorporating phys-
iological constraints, the method accurately detects the start of inspiration and
expiration, offering greater robustness to respiratory variations compared to previous
approaches.

Chapter 5:

1. This chapter introduces a baseline method that compares respiratory cycles using a
DTW-based clustering algorithm, resulting in a shape-based symbolic representation
where each symbol represents a cluster. Tracking these symbols over time results in
a symbolic representation of plethysmography signals.
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2. This approach facilitates the discovery of various ventilation modalities that are
not captured by conventional descriptors. Notably, the symbolic representation
helps identify genotype-specific adaptations to enzyme deficiency and reveals diverse
responses to drug exposure.

Chapter 6:

1. Section 6.3 describes a class of deformations preserving the graph structure of time
series while ensuring a transitive action (Theorem 3). Lemma 1 describe suitable
Reproducible Kernel Hilbert spaces for encoding such deformations.

2. Appendix B.5 demonstrates the identifiability of the model by estimating the true
generating parameter of synthetic data, and we highlight the sensitivity of our
method concerning its hyperparameters.

3. Appendices B.6 and B.7 illustrate the quantitative interest of such representation on
classification tasks on real shape-based datasets with regular and irregular sampling.

4. Section 6.5.2 showcases the interpretability of TS-LDDMM embedding on the
analysis of mice ventilation.
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Chapter 2

Similarity search

Key points:

1. Similarity search involves identifying occurrences of a query time series within
a dataset or a single time series. This chapter specifically addresses the search
for occurrences within a single time series while accounting for invariance to
certain deformations.

2. Two exact and efficient search algorithms, known as the distance profile
and matrix profile, are designed for the Z-normalized Euclidean distance,
invariant to amplitude scaling and offset shift deformations. These algorithms
achieve efficiency through the Fast Fourier Transform and a recursive distance
formulation. These properties are emphasized, as they provide the foundation
for a more general framework for designing invariant distances.

Contributions:

1. A general framework is introduced for constructing deformation-invariant dis-
tances that can be integrated into state-of-the-art similarity search algorithms
without compromising efficiency. Specifically, when sources of variability
can be modeled as a group of deformations acting on time series as a vector
subspace, a deformation-invariant embedding can be created, where the dis-
tance between embeddings is simply the Euclidean distance. This framework
extends the well-known Z-normalized Euclidean distance.

2. As an example, the LT-normalized Euclidean distance is proposed, invariant
to amplitude scaling, offset shift, and linear trend. This distance is locally
robust deformations caused by a trend, and it has shown great success in
several biomedical use cases.

Associated paper:

• Thibaut Germain, Charles Truong, and Laurent Oudre. “Linear-trend nor-
malization for multivariate subsequence similarity search”. In: 2024 IEEE
40th International Conference on Data Engineering Workshops (ICDEW).
IEEE. 2024, pp. 167–175
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2.1 Background

2.1.1 General context.

A computer science problem. Similarity search has received much attention since the
early 90s, and it mainly addresses two problems:

1. Searching for time series that match a query time series.

2. Searching for subsequences in time series that match a query time series.

In other words, the first problem focuses on the global scale, while the second focuses
on the local scale. In both cases, memory constraints and slow disk I/O have driven the
development of efficient approximate algorithms, as querying becomes impractical with
increasing dataset sizes [Lin+07]. When such limitations are present, the similarity search
problem is often referred to in the literature as the time series indexing problem [ZM24].
Although indexing is not the primary focus of this thesis, the general principles of indexing
methods are outlined in the following paragraph. When memory limitations do not apply,
the problem of searching for subsequences within a single time series is known as distance
profiling [ZM24]. Interestingly, this problem can be solved exactly for certain distances
using efficient algorithms [ZM24]. Distance profiling is central to many tasks, such as
motif discovery and anomaly detection [Rak+12b], for which a specific data structure,
known as the matrix profile [Yeh+16], exists. The concept of distance profiling and the
matrix profile structure are discussed in more detail in the following sections.
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Indexing time series datasets. The foundational work in time series indexing has been
laid out in early 90s [FRM94; AFS93]. The main idea is to create a relevant approximation
of the time series so that the approximated dataset can fit in the main memory. Then,
queries can be performed efficiently on the approximate dataset. Lastly, the exact time
series are retrieved from the disk [Lin+07]. These methods are a fine combination between
an algorithm for dimension reduction and an efficient data structure for querying. For
instance, in [FRM94], they combined Direct Fourier Transform (DFT) coefficients with
an R-tree data structure [Bec+90]. More generally, the querying data structure is a tree
learned on the approximate dataset and specifically designed to handle the sequential
nature of time series [Wan+24; Wan+13; AFS93].

Regarding the dimension reduction algorithms, early works have leveraged non-
adaptive representations like wavelet, Fourier, or cosine coefficients, while more recent
works leverage adaptive representations known as symbolic representations. The founda-
tions of such representation have been laid out with the Symbolic Aggregate approXimation
(SAX) [Lin+07], and they are built in three steps: segmentation of a time series, extraction
of some features, and quantization of these features. Many variants of SAX have been
proposed over the years, and in particular, the Indexing SAX family [Pal20] has been
designed specifically for indexing time series datasets. Readers interested in symbolic
representation can refer to the recent manuscript [Com24]. Finally, early works in time
series indexing [FRM94; Keo+01] have established evaluation criteria focusing on time,
space, query performances, and adaptiveness. For further readings on indexing, readers
can refer to [EA12b; Fu11].

2.1.2 Distance profiling

An exact problem. Distance profiling refers to the problem of identifying, in a single
time series, the subsequences similar to a query time series with the additional assumption
that the memory is not overloaded [ZM24]. Indexing methods are still applicable in this
context, but some other methods take advantage of the memory to efficiently and exactly
solve the similarity search problem [ZM24; Rak+12b]. Such methods are preferable when
the time to compute the indexing and query is longer than the time to compute similarities
between the query and all subsequences. Distance profiling algorithms have been applied
for various problems like the prediction of the electricity price [GCS20], the comparison of
thermal signature in metal additive manufacturing [Cha+22], or the detection of chicken
behaviors [Abd+20].

After a formal presentation of the distance profiling problem, the related methods are
presented, and special attention is given to the case of the Euclidean distance, as it is key
for several tasks like motif discovery.

A formal definition. Distance profiling requires the computation of all distances
between a query and the subsequences of a time series. The sequence of the distances is
known as the distance profile, and its formal definition is as follows:

Definition 2 (Distance profile). The distance profile between a time series s = (s1, . . . , sn) ∈
Rn and a query q ∈ Rl, such that l << n and for a distance measure d : Rl ×Rl 7→ R+ is
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the time series: (
d(q, sli)

)
i∈[[1,n−l+1]]

(2.1)

where sli = (si, . . . , si+l−1) is the subsequence of S starting at index i and of length l.

The overlap between subsequences should be handled carefully when querying from
distance profiles. Unfortunately, there is no consensus on the definition of overlapping in
similarity search [SL22]. In this work, two subsequences are considered as overlapping
whenever they share some timestamps:

Definition 3 (Overlapping subsequences). The subsequences sli and sl
′
j of s ∈ Rn and

with i < j overlap if: j < i+ l.

Finally, two types of query are possible:

• K-NN query: Searching by recursion for the K nearest non-overlapping subse-
quences, i.e, the ith selected subsequence has the smallest distance to the query
and does not overlap with the i− 1 previously selected subsequences. Algorithm 1
describes the K-NN query from a distance profile.

• ϵ-range query: Searching by recursion for the non-overlapping subsequences with
the smallest distance to the query and stops whenever the distance is over a threshold
ϵ > 0.

The computation bottleneck. A brute force approach for K-NN distance profiling
requires a computation time of O(Cn +Kn) where C is the computation time of the
distance between two subsequences. Potentially limiting for long time series, more efficient
algorithms have been proposed for several distances by taking advantage of the time
series structure and some properties of the distances [ZM24; Yeh+16]. Specifically, it has
been done for both elastic and lock-step distances but with different strategies.

Algorithm 1 NNQuery
Require: D a distance profile, K the number of similarities, l the subsequence length
1: count← 0, query ← ()
2: while count < K & any(D) < +∞ do
3: i← argmin(D)
4: d← min(D)
5: D[max(i− l + 1, 0),min(i+ l − 1, n)]← +∞
6: query.append((i, d))
7: count = count+ 1
8: return query
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Elastic distance profiling. While better suited for many applications, elastic distances
are slow compared to the Euclidean distance. To avoid such computational burden,
the algorithms take advantage of pruning and early stopping strategies to compute as
few exact elastic distance values as possible. Regarding the DTW distance, one of
the first works [Rak+12b] makes use of a DTW lower bound [KR05] for pruning or
stopping computations. In fact, all pruning and early stopping strategies are derived from
Euclidean-like lower bounds of elastic distances, and the efficiency of a strategy depends
on the lower bound tightness. Starting with the DTW, several lower bounds have been
proposed for different distances over the years [WP21; TPW19; LR13; KPC01]. They have
been compared in a recent study [Pap+23] where they also propose a generic framework
to define a lower bound of an elastic distance. Conjointly, in [HW21], they propose a
general framework to derive pruning/early stopping strategies from lower bounds.

Lock-step distance profiling. Regarding lock-step distances, few algorithms have been
proposed, and they are only concerned with the Z-normalized Euclidean distance [ZM24]
or one of its variants that better deals with the noise [DAV19]. In all cases, the algorithms
first compute the whole distance profile before performing a K-NN or ϵ-range query. To
compute the distance profile, they take advantage of the memory to temporarily store
some coefficients that are fast to compute, and they also make use of the Fast Fourier
Transform (FFT) to compute the dot products between the query and all subsequences.
Algorithm 2 describes the rolling dot product computation between a query and all
subsequences using the FFT. Remarkably, the time complexity for computing the distance
profile does not depend on the length of the query; it is in O(n log(n)) where n is the
length of the time series.

Computing the Z-normalized Euclidean distance profile. It is worth taking a
closer look at the MASS algorithm, which computes the Z-normalized Euclidean distance
profile [ZM24]. Indeed, its computational tricks are the backbones of many algorithms
searching for efficiency.

As a reminder, the Z-normalized Euclidean distance between x ∈ Rl and y ∈ Rl is
defined by:

dZ(x,y) =

∥∥∥∥
x− µx1

σx
− y − µy1

σy

∥∥∥∥

with µx = l−1
∑l

i=1 xi, σ
2
x = l−1

∑l
i=1(xi − µx)

2, and 1 = (1, . . . , 1) ∈ Rl. Interestingly,
the distance can be formulated such that it becomes better suited for efficient computation
of the distance profile:

dZ(x,y) =

√
2

(
l − ⟨x,y⟩ − lµxµy

σxσy

)
(2.2)

Indeed, means and standard deviations of subsequences can be computed in linear
time using cumulative sum. Additionally, all dot products between the query and the
subsequences can be computed by convolving the query along the time series, which can
be efficiently done using the FFT. The MASS algorithm is clearly described in [ZM24]
and Algorithm 3 provides a pseudo-code of the algorithm.
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Algorithm 2 FFTRollingDotProduct
Require: T a time series, Q a query time series
1: n← length(T ), l← length(Q)
2: Q← reverse(Q)
3: Q[l + 1 : n]← 0 ▷ Pad with zeros, assuming l < n
4: iT ← FFT (T ), iQ← FFT (Q)
5: TQ← iFFT (iT ∗ iQ)
6: return TQ[l : n]

Algorithm 3 Z-NormalizedEuclideanDistanceProfile
Require: T a time series, Q a query time series
1: n← length(T ), l← length(Q)
2: Q← Znorm(Q) ▷ Z-normalization of the query
3: TQ← FFTRollingDotProduct(T,Q)
4: σ ← RollingSTD(T, l) ▷ see [ZM24]
5: D ←

√
2(l − TQ/σ)

6: return D

Figure 2.1 Left: Cross-distance matrix between subsequences of the displayed time series in
the case of the Z-normalized Euclidean distance. The subsequence length is equal to the pattern
length. Right: The matrix profile: it is the graph of the nearest non-overlapping neighbor. The
continuous straight lines indicate the location of the repeated patterns.

2.1.3 The Matrix Profile

From one to many queries. Until now, the presented algorithms were all designed to
perform a single query simultaneously. However, for some unsupervised tasks like motif
discovery or anomaly detection, algorithms must perform many queries on the same time
series to identify subsequences of interest. In fact, such algorithms end up computing the
cross-distance matrix between all subsequences or an approximation of it with its K-NN
graph, i.e., the graph that connects any subsequence to its K nearest non-overlapping
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neighbors, see Figure 2.1. When considering the Z-normalized Euclidean distance, a
straightforward application of distance profiling would lead to the construction of the
K-NN graph in a time complexity of O(n2 log(n) +Kn2). Potentially limiting for long
time series, more efficient algorithms have been proposed, and they can reduce the time
complexity up to O(Kn2). In the literature, such algorithms are referred to as Matrix
Profile [Yeh+16], and they have been applied to various tasks like recovering a song from
a cover [Sil+18], detecting abnormalities in internet communication protocols [Sco+24] or
discovering meaningful patterns in ECGs toward better diseases’ diagnosis [WJ21].

Related work. The original work [Yeh+16] defines the matrix profile as the 1-NN graph
of a time series weighted by the distances. Formally, given a time series s ∈ Rn, a window
length l > 0 and a distance measure d, the matrix profile is the sequence:

(
sli,ni, di

)
i∈[[1,n−l+1]]

(2.3)

where ni is the nearest non-overlapping neighbors of the subsequence sli and di the distance
between both subsequences. While the matrix profile is defined for any distance measure,
most algorithms focus on the Z-normalized Euclidean distance to benefit from its fast
computation.

The first proposed algorithm, called STAMP [Yeh+16], has a greedy approach by
looping over all distance profiling, leading to a time complexity of O(n2 log(n)). Soon after,
a second algorithm, called STOMP [Zhu+16], improves over STAMP by taking advantage
of dynamic programming and a recursive formulation of the Z-normalized Euclidean
distance, dropping the time complexity to O(n2). Compared to STAMP, STOMP also
have the advantage of being computable with GPUs [Zhu+16]. Both STAMP and STOMP
are offline algorithms and they can be limiting for long time series. This issue has been
leveraged with SCRIMP++ [Zhu+18], an anytime algorithm that has a time complexity
of O(n2 log(n)) in the worst-case scenario by combining both offline approaches.

These three algorithms are the foundational work around the matrix profile, and several
variations have been proposed depending on the context. For instance, VALMOD [Lin+18]
computes the matrix profile for a range of window lengths. mSTAMP [YKK17] computes
the matrix profile of multidimensional time series. SWAMP [AKK20] approximates the
matrix profile with the DTW by taking advantage of its lower bound [KR05]. Additionally,
an extension of the matrix profile to the case of the K-NN graph has been proposed
in [MAM23]. This extension is further described in the next paragraph as it is particularly
interesting for motif discovery.

Computation of the K-NN graph with STOMP algortihm. Taking on STOMP,
the algorithm loops over the subsequences of a time series, and at each step, it computes
the distance profile between the time series and the subsequence before performing a
K-NN query. The algorithm’s efficiency comes from the recursive formulation of the
dot product between subsequences. Indeed, given a time series s = (s1, . . . , sn) ∈ Rn

and a window length l > 0, ⟨sli+1, s
l
j+1⟩ can be computed in O(1) from ⟨sli, slj⟩ with the

recursion:

⟨sli+1, s
l
j+1⟩ = ⟨sli, slj⟩+ si+1sj+1 − sisj ∀(i, j) ∈ [[1, n− l + 1]]2 (2.4)
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In order to take advantage of the distance recursion formula (eq. (2.2)), the algorithm
first computes the mean and standard deviation of all subsequences as well as the inner
products between the first subsequence and all the others. Then, the distance profiles can
be computed successively in O(n) thanks to the recursive property of the inner product
(eq. (2.4)). A K-NN query is performed at each iteration, leading to a time complexity
of O(Kn2). Algorithm 4 describes the computation of the K-NN graph considering the
Z-normalized Euclidean distance.

Algorithm 4 Compute K-NN Graph (Z-normalized Euclidean distance)
Require: S a time series, l the subsequence length, K the number of neighbor
1: n← Length(S), Graph← ()
2: µ, σ ← AdditionalCoefficients(S, l)
3: I1 ← InnerProductFFT (Sl

1, S)
4: I ← I1
5: D ← DistanceProfile(I, µ, σ)
6: D[1 : l]← +∞
7: Graph.add_neighbors(1, NNQuery(D,K, l)) ▷ See Algorithm 1
8: for i=2,. . . ,n-l+1 do
9: for j=n-l,. . . ,1 do

10: I[j + 1] = I[j] + S[i+ w]S[j + w]− S[j]S[i]
11: I[1]← I1[i]
12: D ← DistanceProfile(I, µ, σ)
13: D[max(i− l + 1, 0),min(i+ l − 1, n)]← +∞
14: Graph.add_neighbors(i,NNQuery(D,K, l)) ▷ See Algorithm 1
15: return Graph

Conclusion. A large family of algorithms has been built around the Z-normalized
Euclidean distance in similarity search. Thanks to their simplicity and efficiency, they
have been applied in numerous contexts with great success. Going further, the following
section shows that these algorithms are not restricted to this single distance but can be
extended to a large family of distances invariant to more complex deformations.

2.2 On distances invariant to rigid deformations.

2.2.1 A limitation of the Z-normalized Euclidean distance

A trend sensitive distance. One concern for tasks like motif discovery is the trend
sensitivity of the Z-normalized Euclidean distance. Indeed, in several applications, the
patterns of interest do not depend on the trend, yet its presence modifies the shape of
the patterns. For instance, as depicted in Figure 2.2, the pattern of interest in an ECG is
the heartbeat cycle, but due to the subject’s movements, a trend appears and deforms
the shape of heartbeats. When performing a similarity search from one heartbeat, some
occurrences are missed. Similarity search under the Z-normalized Euclidean distance is
less reliable in the presence of a trend.
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Figure 2.2 Similarity search performed on an electrocardiogram. The top left figure is the query
subsequence. The top right figure is the time series with the query subsequence location in blue.
The middle is the Z-normalized distance profile. Due to the trend, some occurrences of the query
subsequences are missed with the Z-normalized distance profile. The bottom is also a distance
profile where, for each subsequence, the linear trend is removed before applying the Z-normalized
Euclidean distance. Here, all heartbeats are identifiable.

A closer look. Assuming that the trend is linear at the scale of the subsequences, we
compare, with the Z-normalized Euclidean distance, a sequence x ∈ Rl and one of its
linearly deformed version: x+ at. Here, a > 0, t = (0, . . . , l− 1) and there is no offset as
the distance is invariant to offset shift. The Z-normalized Euclidean distance verifies:

d2Z(x,x+ at) = 2l


1−

1 + (aσt
σx

)ρx,t√
1 + 2(aσt

σx
)ρx,t + (aσt

σx
)2


 (2.5)

where ρx,t = cov(x, t)/(σxσt) is the Pearson correlation between x and t.
Here, the distance depends on two parameters: the variance ratio (aσt)

2/σ2
x and the

Pearson correlation between x and t, namely ρx,t. The distance is null when the sequence
x is linear, i.e., ρx,t = 1. On the other hand, the distance increases and converges to
the limit

√
2l(1− ρx,t) as the ratio (aσt)

2/σ2
x converges to infinity. In fact, the ability of

the Z-normalized Euclidean distance to detect similarities depends on the nature of the
sequence. When the sequence is close to being linear (ρx,t → 1), the distance remains
low regardless of the variance ratio. On the contrary, when the sequence is far from
being linear (ρx,t → 0), the similarity can only be detected if the variance ratio is low,
meaning there is almost no linear trend. Figure 2.3-left illustrates the experiment, and
Figure 2.3-right illustrates the Z-normalized Euclidean distance between a sequence and
its linearly deformed version as a function of the variance ratio. The curves’ steepness at
low variance ratios indicates that the Z-normalized Euclidean distance is not robust to
linear trend deformations.

Potential solutions. A first solution could be to remove the trend before searching for
patterns. Unfortunately, state-of-the-art algorithms for detrending do not achieve perfect
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Figure 2.3 Left: Experiment illustrations, the original signal is linearly shifted with an angle
θ. Right: Z-normalized Euclidean distance value as a function of the ratio between the linear
shift variance and the original sequence variance for different values of the Pearson correlation
between x and t.

results, are time-consuming, or require fine-tuning [Sin+20; Hip+19].
Another solution could be to perform a similarity search with a distance that is

invariant to the effect of a trend at the scale of the subsequences. Going back to the
example of the trended ECG Figure 2.2, the last row displays a distance profile where the
linear trend in the query and all subsequences has been removed before comparing them
with the Z-normalized Euclidean distance. Remarkably, all heartbeat occurrences are well
identified with this distance profile. This observation motivates the work toward distances
invariant to more complex deformations than the amplitude scaling and the offset shift.
Additionally, such distances should inherit the recursive property of the Z-normalized
Euclidean distance for efficient computation of distance and matrix profiles.

2.2.2 Simplifications of the framework for time series shape analysis

As depicted in Section 1.2.2, comparing time series by their shape requires a proper
definition of the action of a group of deformations on a set of time series. In this section,
we refine the general group action, eq. (1.9), to subsets of rigid deformations, and we
derive distances invariant to such deformations.

A fixed time interval. The efficiency of the distance and matrix profile algorithms
under the Z-normalized Euclidean distance is built upon the fast computation of the dot
product between subsequences. Such efficiency is achieved by taking advantage of the
Fast Fourier Transform or the recursive formula in Equation (2.4). In both cases, the
computation relies on the one-to-one Euclidean pairing between subsequences’ samples.
Such pairing imposes subsequences to be defined on the same time interval for regularly
sampled time series. In order to perform shape comparison between subsequences, the
set of admissible time series, eq. (1.8), must be reduced to L2(I,Rd, µ), i.e., the set of
functions defined on the closed interval I ⊂ R taking value in Rd and that are square
integrable for the Borel measure µ. In addition, L2(I,Rd, µ) combined with the inner
product:

⟨f, g⟩L =

∫

I
⟨f(t), g(t)⟩dµ(t) (2.6)
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is a Hilbert space. Note that in comparison to the admissible set of time series, the
definition interval is dropped off as it is the same for all time series in this set. Also, the
group of deformations does not need to be defined on the ambient space. It is sufficient
to define the deformations on the interval I.

No time parametrization invariance. Continuing to focus on efficient distances to
compare subsequences, deformations induced by temporal parametrization are not taken
into account. Indeed, the invariance to such deformations requires a time-consuming
optimization. As a drawback, the distances become sensitive to time warping. More
precisely, following the work [AM14; Mal12], the distances’ sensitivity depends on the
length of the displacement induced by the time parametrization.

Action of a finite dimension vector subspace. Going back to the example of
the Z-normalized Euclidean distance, its invariance to offset shifts can be understood
as the invariance to the set of constant functions {t ∈ I 7→ c | c ∈ Rd}. As well, the
invariance to linear trend can be understood as the invariance to the set of functions
{t ∈ I 7→ at+ b | (a, b) ∈ Rd ×Rd}. In both cases, the group of deformations is, in fact, a
vectorial subspace of L2(I,Rd, µ).

Going in that direction, we suppose that we wish to be invariant to a finite dimensional
vector subspace H of L2(I,Rd, µ) and the amplitude scaling deformations. Formally, we
wish to be invariant to the group R∗

+ ⋉ H with the composition rule (λ2, h2)× (λ1, h1) =
(λ2λ1, h2 + λ2h1) and which acts on the left on L2(I,Rd, µ) by the action:

(λ, h) · f = λf + h (2.7)

Note that the action is not transitive as H is a finite dimensional subspace of an
infinite dimension space. In other words, the quotient space, L2(I,Rd, µ)/R∗

+ ⋉ H is not
reduced to a single orbit. Therefore, it makes sense to search for a metric between orbits,
meaning that the metric is invariant to the action of the group R∗

+ ⋉ H, i.e., with some
abuse of notation the metric verifies: d(λf + h, λ′g + h′) = d(f, g).

2.2.3 Construction of distances invariant to rigid deformations

This section aims to construct efficient distances on time series invariant to deformations
whose action is governed by Equation (2.7). In a general sense, we are interested in
defining a distance on the quotient space of the non-transitive action:

((λ, h),m) ∈ (R∗
+ ⋉ H)×M 7→ λm+ h ∈ M (2.8)

where M is a Hilbert space, and H one of its finite dimensional vector subspace. Following
the strategy presented in Section 1.2.2, we could construct such a metric by defining an
equivariant Riemannian metric on M and find an explicit formulation of the geodesic
distance. An illustration of this strategy can be found in Chapter 12 of [You10]. However,
we can employ a simpler strategy that relies on the vector structure of the group action.
Going in that direction, we first present a way to define invariant distances from invariant
embeddings. We then show that such embedding exists for the action of H on M, which
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can be extended to the action of R∗
+ ⋉ H. We conclude by showing that these distances

inherit from the same recursive property as the Z-normalized Euclidean distance, making
them relevant for similarity search.

Invariant distances based on embedding. Let us consider a generic left action
(g,m) ∈ G ×M 7→ g ·m ∈ M that is not transitive and an embedding map L : M 7→ N.
The following definition and proposition detail the sufficient conditions on the embedding
to define a distance on the quotient space M/G.

Definition 4 (Invariant & orbit-injective embedding). An embedding map L : M 7→ N is
said to be G-invariant, if for any (g,m) ∈ G×M, L(g ·m) = L(m). Additionally, L is
said to be orbit-injective if the application L̃ : [m] ∈ M/G 7→ L(m) ∈ N is injective.

Proposition 1. Suppose an embedding map L : M 7→ N that is G-invariant and orbit-
injective. If (N, d) is a metric space, then the application:

d̃ : ([m], [m′]) ∈ M/G×M/G 7→ d(L(m), L(m′)) ∈ R+

is a metric on the quotient space M/G.

Proof. The symmetry and the triangular inequality of d̃ are inherited from d. The
separation of d̃ comes from the separation d and the orbit-injectivity of L.

Note that in the previous proposition and definition, we did not enforce the set M to
be a Hilbert space. However, this assumption holds for the remainder of this section.

Embedding invariant to a vector subspace. For now, we disregard the action of
amplitude scaling, and we solely focus on the action of the finite dimensional subspace
H of M by the usual vector addition: (h,m) ∈ H ×M 7→ m + h ∈ M. The following
proposition exhibits a H-invariant embedding that is also orbit-injective.

Proposition 2. Let PH be the orthogonal projector on H, and Id be the identity map on
M, the embedding, L = Id − PH (the projector on H⊥) is H-invariant and orbit-injective.

Proof. Existence of L: As H is a finite dimension vector space, it is a closed and
convex subset of the Hilbert space M; the orthogonal projector on H, denoted PH, exists.
Therefore, L : m ∈ M 7→ m− PH(m) ∈ H is well defined.
H-invariance of L: Since H is closed, M = H⊕ H⊥, and for any x ∈ M, we decompose
m = mH + fH⊥ . Thus, for any m ∈ M, and h ∈ H:

L(m+ h) = m+ h− PH(m+ h)
= m+ h− PH(mH⊥ +mH + h)
= m+ h− (mH + h) (projector on a closed vectorial subspace)
= m−mH

= L(m)

which proves the H-invariance of L.
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Orbit-injectivity of L: For any m ∈ M, its orbits corresponds to:

[m] = {m+ h | h ∈ H}
= {L(m) + h′ | h ∈ H, h′ = PH(m) + h ∈ M}
= L(m) + H

Therefore, for any ([m], [m′]) ∈ M/H × M/H, such that [m] ∩ [m′] = ∅ implies that
L(m) ̸= L(m′) proving the orbit-injectivity of L.

Remark 2. Some properties are note worthy:

• If (hi)i∈[[1,N ]] is an orthonormal basis of the finite dimensional vector subspace H,
then the orthogonal projector on H as an explicit formulation:

PH : m ∈ M 7→
N∑

i=1

⟨m,hi⟩hi ∈ H (2.9)

• The H-invariant embedding map L is a linear and bounded operator with Ker(L) = H.

Including invariance to amplitude scaling. Fortunately, we can easily define an
embedding invariant to the action of rigid deformations, eq. (2.8), from an embedding
invariant to the action of the vector subspace:

Proposition 3. Let L : M 7→ M be the H-invariant and orbit-injective embedding map
induced by the orthogonal projector on H as defined in proposition 2. The embedding map:

L̂ : m ∈ M 7→
{

L(m)/∥L(m)∥M if m ∈ M\H
0M else , (2.10)

is (R∗
+ ⋉ H)-invariant and orbit-injective.

Proof. (R∗
+ ⋉ H)-invariance is due to the linearity and H-invariance of L, and the orbit-

injectivity in induced by the linearity and orbit-injectivity of L.

Invariant metric and fast computing. Thanks to Propositions 3 and 1, we can define
a metric invariant to rigid deformations by the application:

d̃ : ([m], [m′]) ∈ M/(R∗
+ ⋉ H)×M/(R∗

+ ⋉ H) 7→ ∥L̂(m)− L̂(m′)∥M ∈ R+. (2.11)

Formally, it is a metric on the quotient space M/(R∗
+ ⋉ H), and if (hi)i∈[[1,N ]] is an

orthonormal basis of H, then for any (m,m′) ∈ M\H×M\H:

d̃([m], [m′]) =

√√√√2

(
1− ⟨m,m′⟩ −∑N

i=1⟨m,hi⟩⟨m′, hi⟩
∥L(m)∥∥L(m)∥

)
(2.12)

with ∥L(m)∥ =
√
⟨m,m⟩ −∑N

i=1⟨m,hi⟩2.
The following section tailors this framework to the case of time series and presents an

example of distance in the discrete case.
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2.2.4 Back to time series

Summary. We started by observing that the Z-normalized Euclidean distance is sensitive
to the deformations induced by linear trends, making the similarity search less reliable
when such deformations are present. However, this distance remains widely used due
to its fast computation. To bridge the gap, we have investigated the properties of the
Z-normalized Euclidean distance that make up its efficiency, and we have presented a
framework to create distances that are invariant to custom groups of deformations while
respecting the efficiency properties.

The case of time series. The group action that we considered for the time series is
defined as follows:

((λ, h), f) ∈ (R∗
+ ⋉ H)× L2(I,Rd, µ) 7→ λf + h ∈ L2(I,Rd, µ) (2.13)

where H is finite dimensional subspace of L2(I,Rd, µ). Essentially, we assume that the
signals belong to a Hilbert space in which they can be decomposed on a functional basis
where a finite dimensional subspace is, in fact, the action of the deformations. Down the
line, the customization of the distance depends on the choice of basis for the deformation
subspace.

From continuous to discrete. Thanks to the measure theory, the transition from
continuous to discrete time series has been made easy using dirac measures. Indeed, the
set L2(I,Rd, µ) has been defined with an arbitrary Borel measure µ. Therefore, by taking
the discrete measure µ =

∑l
i=1 δti , where (ti)i∈[[1,l]] ⊂ I corresponds to the sampling of

the interval I, we have the following equalities:

⟨f, g⟩L =

∫

I
⟨f(t), g(t)⟩dµ(t) =

l∑

i=1

⟨f(ti), g(ti)⟩ (2.14)

for any f and g in L2(I,Rd, µ). It allows to work with continuous signals while performing
computation with their discretized versions.

More importantly, up to some continuity considerations, the converge in law of
1
n

∑n
i=1 δ i

n
toward the Lesbegue measure on [0, 1] ensures the weak convergence of the

discretized distance value to its continuous counterpart as the sampling gets refined.

Univariate Z-normalized Euclidean distrance. As an introductory example, we
retrieve, with the framework, the Z-normalized Euclidean distance in the univariate case.
The set of functions that we consider is L2([0, l],R, λ) where λ is the Lebesgue measure on
[0, l] and l ∈ N∗. The distance is invariant to offset shift, which is the subspace of constant
functions, and it is generated by the unit norm function e : t ∈ [0, l] 7→ 1/

√
l ∈ R.

According to Proposition 3 the invariant embedding of a non-constant function
f is the function: (f − ⟨f, e⟩Le)/∥f − ⟨f, e⟩Le∥L which in the discrete case with the
measure

∑l
i=1 δi leads to i ∈ [[1, l]] 7→ (f(i) − µf )/

√
lσf where µf = l−1

∑l
i=1 f(i) and
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σ2
f = l−1

∑l
i=1(f(i) − µf )

2. Following Equation (2.11), the distance between the non-
constant functions f and g is:

d̃(f ,g) =

∥∥∥∥∥
f − µf1√

lσf
− g − µg1√

lσg

∥∥∥∥∥ =
1√
l
dZ(f ,g) ,

where f = (f(1), . . . , f(l)) ∈ Rl and 1 = (1, . . . , 1) ∈ Rl. We have retrieved the Z-
normalized Euclidean distance up to a constant factor.

Fast computation. An invariant distance defined as (2.12) inherits from the same
fast computation properties as the Z-normalized Euclidean distance, see Equations (2.2)
and (2.4). Algorithm 6 describes the computation of the distance profile with an invariant
distance. Assuming that the deformation group H is a subspace of dimension K, its
computation time is in O(Kn log(n)). Also, the computation of the K-NN graph with
simple modifications of Algorithm 4 to include the coefficient computed with Algorithm 5,
and its computation time remains O(n2).

Algorithm 5 H-RollingInvariantNorm
Require: T a time series, l the subsequence length, H an orthonormal basis of H.
1: n← length(T ),K ← length(H)
2: coefs← {}
3: norm← SelfDotProduct(T, l) ▷ see [ZM24]
4: for k = 1, · · · ,K ∈ H do
5: coefs[k]← FFTRollingDotProduct(T,H[k]) ▷ see Algorithm 2
6: norm← norm− coefs[k]2

7: norm← √norm
8: return norm, coefs

Algorithm 6 (R∗
+ ⋉ H)-InvariantDistanceProfile

Require: T a time series, Q a query time series, H an orthonormal basis of H.
1: n← length(T ), l← length(Q)
2: Q← InvariantEmbedding(Q,H) ▷ see (2.10) and (2.9)
3: TQ← FFTRollingDotProduct(T,Q)
4: norm← RollingInvariantNorm(T, l,H) ▷ see Algorithm 5
5: D ←

√
2(l − TQ/norm)

6: return D

Conclusion. We have presented a general framework to define distances invariant to a
custom set of rigid deformations. We have detailed the framework in the case of time
series, and we have shown that such distances can be combined with distance or matrix
profile algorithms as they conserve the efficiency properties of the Z-normalized Euclidean
distance. In the next section, we present and evaluate a distance that overcomes the
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sensitivity of the Z-normalized Euclidean distance to the trend by considering the set of
affine functions as deformations.

2.3 An illustration: the LT-normalized Euclidean distance

2.3.1 Construction of the distance

The group of deformations. As illustrated in Section 2.2.1, similarity search under
the Z-normalized Euclidean distance is less reliable whenever the time series presents a
trend. However, when it can be assumed that the trend is smooth and behaves linearly at
the scale of subsequences, it would be interesting to have a distance that is invariant to
the set of affine functions: {t ∈ [0, l] 7→ at+ b | (a, b) ∈ Rd × Rd}. Fortunately, this is a
vector space that is generated by the vectors t ∈ [0, l] 7→ ej ∈ Rd and t ∈ [0, l] 7→ tej ∈ Rd

where (ej)j∈[[1,d]] is the orthonormal basis of Rd.

The distance definition. Following the framework described in Section 2.2.3, the
distance can be defined from the orthonormal basis of the deformations, which can be
obtained from the generating vectors by the Gram-Schmidt process. In the case of discrete
univariate time series, the LT-normalized Euclidean distance has the following definition:

Definition 5 (LT-normalized Euclidean distance). The LT-normalized Euclidean distance
between non-affine sequences x ∈ Rl and y ∈ Rl is:

dLT (x,y) =

∥∥∥∥
x− (αxt+ βx1)

∥x− (αxt+ βx1)∥
− y − (αyt+ βy1)

∥y − (αyt+ βy1)∥

∥∥∥∥ (2.15)

with t = (1, . . . , l), αx = cov(x, t)/σ2
t , and βx = µx − αxµt. Additionally, cov(x, t) =

l−1⟨x, t⟩ − µxµt, µt = (l + 1)/2 and σ2
t = (l2 − 1)/12.

Note that the invariant embedding of x removes the affine sequence that best fit x for
the L2-norm as the coefficient (αx, βx) of the linear regression problem:

argmin(a,b)∈R2 ∥x− (at+ b1)∥2

The following equation details the recursive formulation of the LT-normalized Euclidean
distance between x ∈ Rl and y ∈ Rl:

dLT (x,y) =

√
2

(
1− ⟨x,y⟩ − l(µxµy + αxαyσ2

t )

ηxηy

)
(2.16)

where ηx = ∥x− (αxt+ βx1)∥.

2.3.2 Experimental settings

We evaluated the performance of the LT-normalized Euclidean distance on three data
mining tasks for time series:
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• Motif pair discovery: Identifying the two most similar non-overlapping subse-
quences in a time series.

• Similarity search: Identifying all non-overlapping subsequences in a time series
similar to a query subsequence.

• Motif set discovery: Identifying sets of subsequences encompassing every occur-
rence of distinct repeated patterns in a time series.

For reproducibility, the source code and all datasets are available on github1. In what
follows, we present the datasets and the metrics to evaluate the tasks.

Datasets

We conducted our experimental evaluation on several labeled datasets constructed from
real and synthetic time series. In this section, we succinctly describe the datasets, but a
detailed description of all datasets can be found in Appendix A.1.

Real-world data. We have considered the following real-world univariate datasets:

(R-1) mitdb-1: ECGs from the The MIT-BIH Arrhythmia Database [Gol+00; MM01].
It contains 100 time series randomly selected from healthy patients such that they
only contain normal heartbeats.

(R-2) mitdb-2: We randomly selected 100 ECGs from MIT-BIH. The number of repeated
patterns varied between 1 and 4.

(R-4) ptt-ppg: Photoplethysmogram (PPGs) from the Pule-Transit-Time PPG dataset
[Meh+22]. It contains 100 time series of a single pattern randomly selected from
running subjects.

(R-6) arm-coda: Trajectories from the arm-coda datasets [Com+24]. It contains 64 time
series of subjects performing various upper-limb movements.

Synthetic data. We have generated one dataset per data mining task with the following
scenarios:

(S-1) pair: For pair motif discovery. There is 1 pattern of length 100 that repeats twice.
The trend smoothness varies in order to estimate the distance robustness. The
dataset contains 200 time series.

(S-2) single: For similarity search. There is 1 pattern of length 100 that repeats 50 times.
The dataset contains 100 time series.

(S-3) fixed: There are 5 patterns of length 100. For each pattern, the number of
occurrences is sampled uniformly between 2 and 10. The dataset contains 100 time
series.

1https://github.com/thibaut-germain/lt-normalized

https://github.com/thibaut-germain/lt-normalized


40 Chapter 2. Similarity search

Performance metrics

We evaluate algorithms’ performances for all three experiments with the precision, recall,
and f1-score metrics for time series [Tat+18].

The computation of these metrics requires the additional step of pairing real and
predicted local events. In the case of motif set discovery, it is a two-level assignment
problem: predicted motif sets must be assigned to real motif sets, and predicted occurrences
must be assigned to real ones between paired motif sets. The complexity of the assignment
problem is lower in the case of similarity search and motif pair discovery, as there is only
one motif set. Indeed, it becomes a single-level assignment problem: predicted occurrences
must be assigned to predicted ones. In both cases, the optimal pairings maximize the
total overlapping length between real and predicted events. These assignments can be
efficiently computed with the Hungarian matching algorithm [Kuh55; Sar+21].

Additionally, the computation of the metrics relies on a threshold τ ∈ [0, 1] that
controls the overlapping ratio paired occurrences. For precision (resp. recall), a motif
occurrence is counted as a true positive if the ratio between the overlap length and the
predicted (resp. real) occurrence length is greater than the threshold τ . Appendix A.2
provides clear definitions of the metrics in the case of motif set discovery.

2.3.3 Experimental results

In what follows, we present the experimental results for each task. In the last section, we
evaluate the scalability of STOMP algorithm [Zhu+16] combined with the LT-normalized
Euclidean distance when the length of the time series increases.

Motif pair discovery

Presentation of the experiment. In this experiment, we investigated the influence of
the trend on the performance of LT-normalized and Z-normalized Euclidean distances
for solving the best motif pair problem. This problem [Lin+18] consists of finding the
pair of non-overlapping subsequences whose distance is minimal compared to all other
non-overlapping subsequence pairs. The matrix profile provides an exact solution to this
problem. Following the formalism of Equation (2.3), the solution corresponds to the edge
of the nearest neighbor graph with minimal distance. We used this resolution scheme
to compare the performance of the distances. Figure 2.4 illustrates the best motif pair
problem and its resolution with the matrix profile. The top figure shows a time series of
the pair dataset (S-1). The next figures show the LT-normalized and Z-normalized matrix
profiles with the predicted best motif pair locations. The true motif pair was recovered
with the LT-normalized Euclidean distance, while the Z-normalized Euclidean distance
identified a pair of nearly linear subsequences corresponding to the trend.

To evaluate the influence of the trend on the best motif pair prediction, we considered
the pair dataset (S-1), where time series have been generated with different values for
the random walk variance. This parameter controls the trend’s regularity: the regularity
decreases as the variance increases. To measure the performance, we evaluate the accuracy
score. A best motif pair prediction is counted as a true positive if, for each subsequence,
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Figure 2.4 Top: Synthetic time series with a trend and one motif that occurs twice. True motif
locations are highlighted in light purple. The predicted best motif pair is colored in orange for the
LT-normalized Euclidean distance and blue for the Z-normalized Euclidean distance. Middle:
Matrix profile with the LT-normalized Euclidean distance. The starting location of the predicted
best motif pair is in orange. Bottom: Matrix profile with the Z-normalized Euclidean distance.
The starting location of the predicted best motif pair is in blue.

the predicted location overlaps the real location by at least 50%. Figure 2.5 shows the
accuracy scores of both distances as a function of the variance of the random walk.

Results. When the variance of the random walk is null, there is no trend, and the
signal-to-noise ratio is equal to 22 dB on average. In this case, both distances are expected
to predict the best motif pairs correctly, and indeed, both empirical scores are equal to
one. However, the empirical results show that as soon as the variance of the random
walk increases, the Z-normalized accuracy score decreases. On the other hand, the
LT-normalized accuracy score remains consistently high for low random walk variances
(between 0 and 0.2). Then, it decreases as the regularity of the trend decreases. Indeed,
as the random walk variance increases, the trend is less likely to be linear at the scale of
the motif.

Thanks to its invariance to linear trend, the LT-normalized Euclidean distance is more
robust to the deformations induced by the trend for detecting the best motif pairs.

Similarity search

Experiment presentation. In this experiment, we compare the performance of LT-
normalized and Z-normalized Euclidean distances on the distance profiling problem
(Section 2.1.2).

We performed our experiment on datasets where the time series have one pattern
that repeats multiple times: single (S-2), mitdb-1 (R-1), and ptt-ppg (R-4). Figure 2.6
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Figure 2.5 Accuracy scores for the LT-normalized and Z-normalized Euclidean distances as a
function of the random walk variance.
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Figure 2.6 Similarity search on: (a) photoplethysmogram, and (b) electrocardiogram. In both
cases, the top left is the query subsequence, the top right is the time series with the query
subsequence location in blue, the middle is the LT-normalized Euclidean distance profile, and the
bottom is the Z-normalized Euclidean distance profile. Due to the trend, some occurrences of the
query subsequences are missed with the Z-normalized Euclidean distance profile. At the same
time, they are all identifiable with the LT-normalized Euclidean distance profile.

illustrates the resolution of the similarity search problem on a PPG (a) and an ECG
(b). In both cases, the top right plot shows the query sequence corresponding to the first
occurrence of the repeated pattern. The top right plot shows the raw signal and the plots
below show the LT-normalized and Z-normalized distance profiles. For both time series,
the distance profiles are minimal at the starting locations of occurrences of the query
sequences. However, the Z-normalized distance profile is sensitive to the trend, and the
distance remains high for some occurrences. On the contrary, the trend less affects the
LT-normalized distance profile, and the distance remains consistently low at the starting
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Figure 2.7 ROC curves of the similarity search problem for LT-normalized (orange) and Z-
normalized (blue) distances on the datasets: (a) s-search, (b) ptt-ppg, and (c) mitdb-1. The
LT-normalized Euclidean distance performs better than the Z-normalized Euclidean distance.

location of occurrences. The LT-normalized Euclidean distance is better suited for the
similarity search on these two time series.

Results. We computed ROC curves for each distance and dataset according to the
procedure described in [Pap+22b]. We counted a predicted occurrence as valid if it
overlapped with a real occurrence by at least 75%. The results are shown in Figure 2.7. On
average, the LT-normalized Euclidean distance outperformed the Z-normalized Euclidean
distance as its AUC score is higher across all datasets. It is also worth noticing that
the ROC curves of the LT-normalized Euclidean distance are consistently above those of
the Z-normalized Euclidean distance. Indeed, the LT-normalized Euclidean distance is a
generalization of the Z-normalized Euclidean distance to a broader class of deformations.
As a result, the LT-normalized Euclidean distance profiles are more robust to the trend-
induced deformations. Therefore, the number of true occurrences detected with the
LT-normalized Euclidean distance is at least as good as that of the Z-normalized Euclidean
distance in many cases.

Motif set discovery

Experiment presentation. In this experiment, we evaluated the performance of
LT-normalized and Z-normalized Euclidean distances in solving the motif set discovery
problem.

The motif set discovery problem [Lin+02] consists of identifying and clustering all
occurrences of repeated patterns present in a time series. A heuristic based on the matrix
profile exists to solve this problem [Zhu+16; Ben+20]. This heuristic can be extended
to the LT-normalized Euclidean distance, and we used it to evaluate the performance of
both distances. We also added two baselines, a matrix profile with the Euclidean distance
and a second matrix profile with the Z-normalized Euclidean distance where time-series
are preprocessed using a trend removal algorithm: A Seasonal-Trend Decomposition
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Table 2.1 Motif Set Discovery. Euclidean (Euc), Z-normalized (Z), LT-normalized (LT), Trend
removal & Z-normalized (STL+Z).

algorithm Euc LT STL+Z Z
dataset metric

single (S-2) fscore 0.22 0.83 0.81 0.69
precision 0.84 1.00 0.97 0.98
recall 0.13 0.72 0.70 0.54

fixed (S-3) fscore 0.34 0.59 0.57 0.56
precision 0.33 0.54 0.52 0.51
recall 0.41 0.69 0.66 0.66

mitdb1 (R-1) fscore 0.40 0.57 0.55 0.53
precision 0.99 0.98 0.98 0.97
recall 0.26 0.42 0.40 0.39

mitdb2 (R-2) fscore 0.14 0.43 0.43 0.39
precision 0.65 0.73 0.72 0.72
recall 0.10 0.36 0.33 0.32

ptt-ppg (R-4) fscore 0.23 0.54 0.62 0.47
precision 0.95 0.97 0.97 0.98
recall 0.13 0.39 0.47 0.33

arm-coda (R-6) fscore 0.14 0.22 0.19 0.19
precision 0.15 0.19 0.18 0.18
recall 0.22 0.35 0.31 0.33

Procedure Based on LOESS (STL) [Cle+90]. In terms of settings, the algorithm requires
the number of sets to discover, which we assumed to be known, a subsequence similarity
ratio, which we set to 3, and a subsequence length, which we set to be the average motif
length for each dataset. The STL algorithm period is also set to the average motif length.

We ran the experiment on all datasets except the pair dataset. We evaluated the
performance using the precision, recall, and f1-score metrics. We counted a pair of
predicted/real occurrences as valid for the precision (resp. recall) metric if the length of
their intersection is greater than 50% of the length of the predicted (resp. real) occurrence.

Results. Experimental results are shown in Table 2.1. On all datasets except ptt-
ppg (R-4), the ranking based on the f1-score remains identical: (1) LT, (2) STL+Z, (3)
Z, and (4) Euc. On ptt-ppg, STL+Z is first, and LT is second. STL+Z algorithm first
removes the trend with the STL algorithm before applying the motif discovery algorithm
with the Z-normalized. LT and STL+Z are the best performers, meaning that removing
deformations induced by the trend is helpful for motif discovery on these datasets.

The main difference between the LT and the STL+Z algorithms is the management of
the trend. The STL+Z removes the trend by leveraging a decomposition of the time series
in season, trend, and remainder components. On the other hand, the LT algorithm only
assumes that the trend is approximately linear at the scale of the motifs. LT performs
better than STL+Z on most datasets. It validates the assumption that the trend is locally
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Figure 2.8 Scalability of the matrix profile with the time series length for LT-normalized (blue)
and Z-normalized (orange) Euclidean distances.

linear on these datasets.
Additionally, the LT algorithm is almost parameter-free, while the STL+Z algorithm

requires setting several parameters. Also, STL+Z is more time-consuming: it takes
around 1 minute to process 100K samples with STL+Z, compared to a dozen seconds for
LT. In the presence of a trend, the LT-normalized Euclidean distance is an efficient and
robust first approach for motif discovery.

Scalability

Experiment presentation. In this experiment, we evaluated the scalability of the
matrix profile with respect to the time series length for the LT-normalized and Z-
normalized Euclidean distances. We considered the STOMP algorithm [Zhu+16] to
compute the matrix profile with both distances. We generated 50 time series based on
the m-set scenario (S-2) with lengths of 10K, 50K, 100K, 500K, and 1M. We measured
the computation time for a subsequence length of 100.

Results. The average computation time is shown in Figure 2.8. Even though the
LT-normalized Euclidean distance generalizes the Z-normalized Euclidean distance and
performs better on several tasks, the matrix profile’s computation time is equivalent for
both distances and evolves according to its quadratic complexity.

Conclusion

In the present chapter, we have outlined the general principles of similarity search and
reviewed in detail the algorithms that solve the distance profiling problem or compute
the matrix profile data structure. In both cases, these algorithms are restricted to the
Z-normalized Euclidean distance as they rely on its recursive formulation to perform
fast computations. While widely used, the Z-normalized Euclidean distance is sensitive
to some deformations, like the presence of a trend. To overcome this issue, we have
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proposed a general framework to create distances that preserve the recursion formula
while being invariant to custom sets of deformations. In particular, we have illustrated
the framework by introducing the LT-normalized Euclidean distance. This distance is
invariant to amplitude scaling, offset shift and linear trend. We have shown that this
distance is more robust to the deformation induced by a trend than the Z-normalized
Euclidean distance, making it more reliable for similarity search or motif discovery.

In fact, similarity search is a critical subtask for motif discovery, and in the next
chapter, we take advantage of the matrix profile and our custom distances to propose a
novel algorithm for motif discovery based on persistent homology, a tool from topological
data analysis.



Chapter 3

Motif discovery

Key points:

1. Motif discovery consists of the unsupervised detection and localization of
local patterns that repeat themselves in a time series.

2. The mathematical definition of a motif is not unique, leading to the devel-
opment of algorithms based on varying criteria. Some algorithms prioritize
motif frequency, while others focus on the similarity between motif occur-
rences. Most methods depend on core hyperparameters, such as the number
of motifs, motif length, or a similarity threshold, which are often difficult to
define and typically determined through trial and error.

Contributions:

1. This chapter introduces an algorithm called PersistentPattern (PEPA) for
discovering variable-length motifs without requiring prior knowledge of the
similarity between motif occurrences. PEPA works by embedding a time
series into a graph and summarizing it through persistent homology, a tool
from topological data analysis, which then allows the identification of relevant
motifs from the graph’s summary.

2. An adaptive version of the algorithm that infers the number of motifs to
discover from the graph summary is also presented.

3. A benchmark of 9 labeled datasets, including 6 real-world datasets, is intro-
duced for motif discovery. Empirical evaluations show that PEPA significantly
outperforms state-of-the-art algorithms.

Associated papers:

• Thibaut Germain, Charles Truong, and Laurent Oudre. “Persistence-based
motif discovery in time series”. In: IEEE Transactions on Knowledge and
Data Engineering (2024)

• Thibaut Germain, Charles Truong, and Laurent Oudre. “Interactive motif
discovery in time series with persistent homology”. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases.
Springer. 2024, pp. 383–387
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3.1 Introduction

The task of motif discovery. This chapter addresses the task of motif discovery,
which corresponds to the process of identifying recurrent local patterns and locating their
occurrences within a single time series without any prior assumptions regarding their
shape or location. Motifs can reveal valuable insights into the underlying dynamics of the
time series. For example, in electrocardiograms (ECGs), the heartbeat is the reference
motif. However, ECGs of patients experiencing premature ventricular contractions present
a second motif specific to the malfunction [MM01] (see Figure 3.1b). Additionally, motifs
can serve as concise representations of long time series, facilitating downstream tasks such
as classification and anomaly detection. These summarized representations can reduce
computational complexity, enhance performance, and aid in interpreting results [TL17].
Motif discovery algorithms have been applied in various domains such as industry [ZGC20;
SMR13], medicine [Liu+15; SR+15], and biology [FN19; Lee+18].
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Figure 3.1 On the left, the representation of the time series by a persistence diagram, and
on the right, the motif sets discovered by our algorithm on an electrocardiogram (ECG) of a
patient suffering from premature ventricular contraction (PVC). (a) Persistence diagram: it
is a simplified representation of the ECG that shows the existence of two significant motif sets
(in green and red). (b) Electrocardiogram: pattern 0 (green) represents heartbeats with PVC,
and pattern 1 (red) represents normal heartbeats. Vertical dashed lines on the ECG indicate the
start location of patterns’ occurrences.

Limitations of motif discovery algorithms. The mathematical definition of motif is
not unique, leading to the development of algorithms based on different criteria. Some
algorithms prioritize the motif frequency [SL22; GSS16; Lin+02], focusing on identifying
the most frequently recurring patterns, while others emphasize the similarity between
motif occurrences [Zhu+16; CCN10; ZMK19; Lin+18], aiming to detect patterns with
highly consistent occurrences. Most of these algorithms rely on three core parameters:
the number of motifs to discover, the motif length, and a similarity threshold between
motif occurrences. These parameters highlight the current limitations of state-of-the-art
algorithms. Indeed, the number of motifs to discover is imposed, and few guarantees
exist whether the number of motifs is overestimated or underestimated. As well, the
first algorithms supposed that all occurrences of all motifs have the same length [Lin+02;
BHL14; GSS16], but more recent algorithms leverage this issue by searching for motifs
within a length range [Sen+14; Lin+18]. Finally, the similarity threshold is hard to
determine as it depends on the variances between occurrences of each repeated pattern.
In practice, this parameter is set by trial-and-error [SL22].

The proposed algorithm. With regard to the current limitations, we propose a scalable
algorithm that finds motifs of variable length without requiring a similarity threshold.
The algorithm is based on a novel criterion: the persistence of motifs. Persistent homology
is a central tool in topological data analysis [BCY18] that efficiently tracks topological
features at different spatial resolutions. In our context, the algorithm tracks motifs for all
similarity thresholds and returns motifs that persist across the largest ranges of scales.
Intuitively, the persistence of a motif simultaneously measures the similarity between its
occurrences and their dissimilarity with the rest of the time series. The algorithm discovers
motifs by mapping a time series onto a graph and creating a summary of the graph from
which the most persistent motifs are identified. The algorithm also provides an intuitive
visual representation of the graph summary, called persistence diagram, that informs



50 Chapter 3. Motif discovery

about the number of relevant repeated patterns in a time series (see Figure 3.1a). Taking
advantage of this representation, we also present an adaptive version of the algorithm
that infers the number of motifs to discover from the persistence diagram. Finally, in our
experimental evaluation, we show that:

• Both algorithms significantly outperform 6 state-of-the-art algorithms on 9 labeled
datasets, including 6 real-world datasets.

• Hyperparameters have limited influence on the algorithms’ performances.

• Like state-of-the-art algorithms, the theoretical and empirical time complexity is
quadratic in the time series’ length.

Chapter outlines. The chapter is organized as follows: In Section 3.2, we review the
related work and detail our contributions. In Section 3.3, we present both algorithms.
In Section 3.4, we describe the experimental settings. In Section 3.5, we review the
experimental results and in Section 3.6, we present an interactive application for motif
discovery.

3.2 Background

In this section, we first recall some definitions related to time series and motif discovery,
then we discuss related work and finally, we describe the scientific positioning of our
approach.

3.2.1 Definitions

We denote by Sl the set of all subsequences of length l of a time series s ∈ Rn, and we
assume a distance function d : Rl × Rl 7→ R+ for the following definitions.

Definition 6. (r-match) Given a threshold r > 0, the subsequences sli and slj of a time
series s ∈ Rn are r-matching iff d(sli, s

l
j) < r.

Several motif discovery algorithms consider the following definitions of motif set:

Definition 7. (Spherical motif set, [Lin+02]) Given a threshold r > 0, the spherical
motif set associated with a sequence c of length l is the largest set of non-overlapping
subsequences of length l of s such that all subsequences are r-matching with c. The
sequence c is called the core element of the spherical motif set.

Definition 8. (Bi-spherical motif set, [Lin+18]) Given a threshold r > 0, the bi-spherical
motif set associated with a pair of sequences (c1, c2) of length l is the largest set of non-
overlapping subsequences of length l of S such that all subsequences are r-matching with
either c1 or c2. The sequences c1 and c2 are called the core elements of the bi-spherical
motif set.
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3.2.2 Related work

One name several meanings. In the literature, motif discovery in time series refers to
a number of distinct problems that belong to two primary categories:

• Motif Pair Discovery: Identifying the two most similar non-overlapping subse-
quences in a time series.

• Motif Set Discovery: Identifying sets of subsequences that encompass every
occurrence of distinct repeated patterns in a time series.

In this chapter, we focus on the motif set discovery task. For more information on motif
pair discovery, we refer the interested reader to the reviews [TL17; SL22].

Concerning motif set discovery, current algorithms address the problem either with a
frequency or similarity approach. Both approaches are further described in the following
paragraphs. As we will see, these approaches are disjoint and result in different definitions
of motif sets, which are illustrated in Figure 3.2. As well, the main algorithms for motif
set discovery are summarized in Table 3.1.

(a) Frequency (b) Similarity (c) Persistence

Figure 3.2 Three approaches for motif set discovery. The points represent the subsequences
and the algorithms search for two motif sets. The predicted sets are in red and blue, and the
points in gray are the outliers. The cross represents the barycenter of motif sets and they are
as well subsequences. (a) Frequency based: Clusters are obtained with SetFinder [BHL14].
The clusters are the largest sets contained in non-overlapping balls of radius r and centered
on some subsequences. (b) Similarity based: Cluster are obtained with VALMOD [Lin+18].
The clusters are sets included in balls of radius r centered on the two most similar pairs of
subsequences. (c) Persistence based: Clusters obtained with PEPA. The clusters are formed
incrementally by similarity.

Frequency-based algorithms. The frequency-based algorithms aim to identify the
sets of subsequences representing the most frequently repeated patterns. The first motif
set discovery algorithm, named EMMA [Lin+02], follows the frequency-based approach.
Given the number of motifs to discover, a fixed subsequence length, and a similarity
threshold r > 0, the algorithm iteratively finds the largest spherical motif set with radius
r > 0 and centered on a subsequence of length l of the time series. Additionally, the motif
sets are chosen so that the spheres do not overlap, meaning that the core elements are at
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least a distance of 2r from each other. For computational efficiency, subsequences are
discretized using Symbolic Aggregate approXimation (SAX) [Lin+07], and subsequences
with similar symbols are grouped in sets. The sets are refined in a post-processing step
to obtain the final spherical motif sets according to the Euclidean distance. Similarly to
EMMA algorithm a more recent algorithm SetFinder [BHL14], returns exact solutions
when working with the Euclidean distance or the Z-normalized Euclidean distance [DAV19].
This algorithm computes the spherical motif set of all subsequences and selects the largest
sets while preserving the non-overlapping constraint between motif sets. For EMMA
and SetFinder, motif sets’ core elements are an approximation of barycenters by real
subsequences of the time series, which, unfortunately, makes the discovery of motif sets
sensitive to noise. The LatentMotif [GSS16] algorithm addresses this issue by considering
an optimization problem that maximizes the total motif frequencies in order to learn
the core elements of the spherical motif sets. The non-overlapping constraint between
spheres is relaxed and encoded via a penalty function incorporated in the optimization
criteria. Nevertheless, an optimal solution is not guaranteed as the optimization problem
is non-convex.

All previous algorithms consider the subsequence length fixed and equal across all
motif sets. However, a time series may contain repeated patterns of variable length. Early
on, the Grammarviz algorithm [Sen+14] has been proposed to address this issue. The
algorithm initially discretizes the time series as a long sequence of symbols with the
SAX representation. Then, the longest and most repeated patterns are identified with
the grammar induction algorithm Sequitur [NW97] that creates a hierarchical structure
between the repeated patterns. While being time-efficient, the algorithm is sensitive to
the discretization step, as the identification of repeated patterns relies on an exact match
between symbolic representations of subsequences. Several variants of Grammarviz have
been proposed to address this problem [Sen+18; GL17; GL19].

A recent algorithm, k-motiflets [SL22], focuses on finding the best motif set that
contains k non-overlapping subsequences of a fixed length with minimal pairwise distances.
Compared to previous algorithms, the similarity threshold is more intuitive as the set
is based on the number of occurrences. In addition, a motif set is not centered on a
subsequence but needs to contain the k subsequences included in a sphere of minimal radius.
The authors also suggest heuristics to determine appropriate numbers of occurrences and
subsequence lengths. However, this algorithm focuses on one of the motif sets for a time
series with multiple repeated patterns.

The frequency-based algorithms rely on a similarity threshold to determine the radius
of spheres enclosing the motif sets. This threshold can be difficult to set and is assumed
to be the same for all motif sets. When this assumption does not hold, the motif sets
may contain false occurrences or miss true occurrences.

Similarity-based algorithms. Similarity-based algorithms aim to identify sets of sub-
sequences that represent repeated patterns with minimal variability between occurrences,
regardless of frequency. Unlike frequency-based methods, which may overlook patterns
that appear only once or twice, similarity-based approaches are capable of detecting such
occurrences.
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Table 3.1 VL: variable length, NP: number of parameters, Complexity: worst case time
complexity. n: time series length, l: subsequence length, k: number of motif’ occurrences, K:
number of subsequence’ neighbors.

Approach Algorithm VL NP Complexity

Frequency

EMMA 5 O(ln2)
SetFinder 3 O(n3)

LearnMotifs 4 O(ln)
k-Motiflets 4 O(kn2 + nk2)

GrammarViz ✓ 5 O(ln)

Similarity
STOMP 3 O(n2)

VALMOD ✓ 5 O((lmax − lmin)n
2)

MDLC ✓ 3 O(n3/lmin + (lmax − lmin)n
2)

Persistence PEPA ✓ 3 O(Kn2)
A-PEPA ✓ 2 O(Kn2)

One of the earliest similarity-based algorithms, MDLC [Rak+12a], clusters subse-
quences of variable length such that the description length of the time series with the
clusters is minimal. It is a greedy bottom-up algorithm that, at each iteration, either
creates a cluster, adds a subsequence to a cluster, or merges two clusters. The choice
of action is based on the number of bits saved. Unlike the more recent algorithms,
STOMP [Zhu+16; Ben+20] and VALMOD [Lin+18], MDLC does not require the number
of clusters as input, and it stops clustering when the time series description length cannot
be improved.

The declinations of STOMP and VALMOD into motif discovery algorithms leverage
the 1-NN matrix profile, a data structure representing the nearest non-overlapping
subsequence graph [Yeh+16]. Given the number of motifs, a fixed subsequence length,
and a similarity ratio λ > 0, STOMP algorithm iteratively finds spherical motif sets
whose core element corresponds to the left member of the most similar non-overlapping
subsequence pair. STOMP also maintains the non-overlapping constraint between all
subsequences of all motif sets. To that end, a mask containing all subsequences that
overlap with previously selected motif sets is maintained across iterations. The most
similar pairs are found with the matrix profile, and the associated spherical motif sets are
retrieved by distance profiling with the MASS algorithm [ZM24].

The second algorithm, VALMOD, differs from STOMP in two ways: it searches for
motif sets with subsequences of variable length within a range [lmin, . . . , lmax] and it
considers bi-spherical motif sets whose core elements are the most similar subsequence
pairs. More precisely, the subsequences have the same length in each motif set, but the
length can differ from one set to another. The z-normalized Euclidean distance is divided
by the subsequence length to compare subsequences of different lengths. The matrix
profile also stores the length of the nearest non-overlapping subsequence. Finally, motif
sets are found using the same resolution scheme as STOMP algorithm.

In contrast to frequency-based algorithms, similarity-based algorithms assume that
the radius of the balls in which motif sets are contained differs for each set. The radius is
proportional to the z-normalized Euclidean distance between the subsequences of the most
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1 2.a

3 2.b

Figure 3.3 (1) From time series to graph: Nodes are subsequences, and edges depend on
the distance between them. (2) Graph clustering from persistent homology. (a) From
graph to persistence diagram: The graph is summarized by a diagram where each point
is a connected subgraph, and its location depends on the weight of some edges. (b) From
persistence diagram to clusters: Subgraphs associated with motif sets are in the upper left
corner. They can be isolated with two thresholds: the red lines. There are two clusters, red/green;
the bi-colored points are subgraphs included in the subgraphs of cluster, but their membership
cannot be determined from the persistence diagram. The gray points are subgraphs associated
with irrelevant parts of the time series. (3) From clusters to motif sets: time-adjacent
subsequences are merged in each cluster.

similar pair associated with the motif set. The proportionality is defined by a similarity
ratio λ > 0. With such a definition, motif sets are sensitive to the nearest neighbor pairs,
and small perturbations can lead to different sets.

3.2.3 Contributions and scientific positioning

Sensitivity to the similarity threshold. All presented algorithms consider motif sets
as collections of subsequences contained in balls whose radius is determined by a similarity
threshold. However, setting this parameter is not straightforward as it requires prior
knowledge about the similarity between subsequences of repeated patterns. In practice,
the threshold is often set by trial and error [SL22], but this strategy is not tractable for
large time series.

A novel motif set definition robust to similarity thresholds. Our algorithm,
called PersistentPattern (PEPA), takes a different approach. It creates motif sets without
any prior knowledge about the similarity between subsequences. Indeed, the algorithm
generates motif sets for all possible similarity threshold values, ranging from 0 to +∞.
Some motif sets persist across multiple threshold values, and the algorithm selects motif
sets with the largest persistence range. In addition, the algorithm does not impose
a spherical constraint on the motif sets. Instead, the subsequences are incrementally
grouped to form the motif sets based on their similarity. It allows the motif sets to adapt
to the local shape of the neighborhood of the subsequences. Ultimately, the algorithm
searches for repeated patterns of variable length that are significantly different from each
other regardless of their frequency. This approach is illustrated in Figure 3.2.
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A heuristic to infer the number of motifs. All presented algorithms also require the
number of motif sets as a parameter. Although difficult to define without prior knowledge,
our persistence-based approach provides a simplified representation of a time series from
which it is possible to infer the number of motif sets. Thus, we will also present an
adaptive version of the main algorithm (A-PEPA) that automatically infers the number
of motif sets to be discovered.

3.3 Method

An overview of the method. Our approach is based on two main ingredients: a graph
that encodes the structural relationships between all subsequences in the time series, and
the use of persistent homology (a tool derived from topological data analysis) to isolate
and identify the motif sets. The algorithm PEPA can be broken down into three steps
illustrated in Figure 3.3:

1. From time series to graph: Transforming a time series into a graph where
nodes represent subsequences and edges are weighted with the distance between
subsequences. The graph is an adaptation of the k-nearest neighbor graph, which
incorporates similarity and time dependence of subsequences.

2. Graph clustering through persistent homology: Identifying clusters represent-
ing motif sets and separating them from the isolated nodes of the graph representing
irrelevant parts of the time series.

3. From clusters to motif sets: Merging temporally adjacent subsequences in each
cluster to form the variable length motif sets.

3.3.1 From time series to graph

This section describes the transformation of a time series s ∈ Rn into an undirected
weighted graph Gs. For the moment, let d be a distance function between subsequences.
We will further detail the distance later in this section.

Definition 9 (Undirected weighted graph). An undirected weighted graph G = (V,E)
consists of a set of vertices (also called nodes) V and a set of weighted edges E ⊂
{(x, y, wxy) | (x, y) ∈ V × V, wxy ∈ R+}, where wxy is the weight of the edge between
nodes x and y.

In Gs, the set of nodes is composed of all subsequences of length l of s (denoted as Sl)
and the edges between subsequences are defined according to two criteria:

• Similarity: each subsequence sli is connected to its K most similar non-overlapping
subsequences.

• Time: it connects with its time adjacent subsequences (sli−1, s
l
i+1).



56 Chapter 3. Motif discovery

More formally, let nk
i denote the k-th nearest non-overlapping neighbor of the subse-

quence sli and dki the distance between subsequences sli and nk
i . The similarity edges are

defined by the set:

E1 =

n−l+1⋃

i=1

{(
sli,n

k
i , d

k
i

)
| k = 1, . . . ,K

}
, (3.1)

and the time edges, by the set:

E2 =
n−l⋃

i=1

{(sli, sli+1,max
(
d1i , d

1
i+1

)
}. (3.2)

Intuition on the graph. The final graph Gs is defined as (Sl,E1 ∪ E2). Intuitively,
low-weight edges connect similar subsequences, while high-weight edges connect less
similar ones. The graph (Sl,E1) is a variant of the well-known k-nearest neighbor graph,
as it connects each subsequence to its k-nearest non-overlapping neighbors. In practice,
this graph can split a single motif set into several clusters as subsequences are considered
independent and they are not compared with time-adjacent subsequences. In such a
situation, the number of discovered motif sets is over-estimated, and a non-trivial post-
processing is needed to merge similar clusters. We introduce the time edges set E2 to
prevent this phenomenon: in our graph, Gs, a subsequence is always connected to the
subsequences just before sli−1 and after sli+1. As a result, our method assigns overlapping
subsequences that represent the same repeated pattern in a single cluster, which limits
the over-clustering effect.

Proposition 4. The graph Gs associated with the time series s ∈ Rn is connected.

Proof. The graph (Sl,E2) is a path graph; thus, it is connected, and by the union of two
graphs, Gs is connected.

Choice of distance. Intuitively, the construction of the graph Gs can be described in
two steps: first, computing the similarity graph, which corresponds to the K-NN matrix
profile, and then, inferring the time edges from the similarity graph. As we have seen in
Section 2.1.3, the computation of the K-NN matrix profile can be done in O(Kn2) with
distances invariant to some rigid deformations which also verify a recursive formulation
(see Section 2.2.4). In what follows, we assume to work with such distances. However, if
efficiency is not a concern, one can use more complex distances like the DTW or other
elastic distances. For the experiments described in subsequent sections, the LT-normalized
Euclidean distance serves as a baseline (see Section 2.3).

Improving the distance. Any distance invariant to rigid deformation defined through
the framework described in Section 2.2.4 take value in [0, 2]. Given the expected prop-
erties of the graph Gs, the distance should be able to distinguish between subsequences
corresponding to the same repeated pattern and those that do not. To enhance this
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Figure 3.4 The (α, β)-rectification: The blue line represents distance behavior with the absolute
value on the range of [−2, 2]. It is obtained for small value of α and β. As α increases, the
distance becomes more restrictive as its value remains low on smaller neighborhoods centered
on 0 and tends towards 2 outside the neighborhood. For high α, the distance becomes more
permissive when β increases as the distance value remains low in larger neighborhoods centered
on 0.

behavior, we introduce the (α, β)-rectification, which applies a soft polarization to the
distance values near the boundaries of the interval [0, 2]. The rectified distance can be
understood as a parametric, kernelized version of the original distance, with parameters
controlling the variability tolerance. Formally, the (α, β)-rectification is defined as follows:

Definition 10. Let α ∈ R∗
+, β ∈ [0, 2[, and d : Rl × Rl 7→ [0, 2] be a distance function,

the (α, β)-rectified distance between x ∈ Rl and y ∈ Rl is given by:

dα,β(x,y) = 2fα,β(d(x,y))/fα,β(2) (3.3)

with fα,β(x) =
√

tanh(αβ2) + tanh(α(x2 − β2))

Figure 3.4 shows the influence of the parameters α and β on the function fα,β. The
parameter α controls the polarization of the distance on the limits of the interval [0, 2]
while β acts as a threshold on the raw distance value. In fact, let β be fixed then
limα→∞ fα,β/fα,β(2) = 1]β,2].

3.3.2 Graph clustering through persistent homology

Persistent homology & graph clustering. The graph Gs is such that overlapping
subsequences from the same motif set are connected with edges of low weight. Therefore,
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(j) Clusters

Figure 3.5 Illustration of the graph clustering algorithm through persistent homology. (a) The
graph to cluster: The number on the nodes is their id, and the weights are the distance between
nodes. (b)-(g) The NNVR filtration milestones of the graph: The edges are added in
order of increasing weight. (h) The corresponding persistence diagram: The births and
deaths of connected subgraphs traced along the filtration are summarized with a 2D scatterplot
where births are on the x-axis and deaths are on the y-axis. (i) The birth and persistence
thresholds: The red and green points in the upper-left corner indicate two clusters. The birth
threshold (vertical red line) and the persistence threshold (off-diagonal red line) are set to isolate
this region. The bi-colored points are subparts of the cluster, but their membership cannot be
determined from the persistence diagram. The gray points are associated with irrelevant parts of
the time series. (j) Clustering result: Clusters are in red and green; irrelevant nodes are in
gray.

motif sets can be retrieved by searching for connected subgraphs of Gs with edges of low
weight. Persistent homology is well-suited for identifying and isolating such subgraphs.
Persistent homology is a central tool in the field of topological data analysis [BCY18],
used to track the persistence of topological features of data at multiple scales with respect
to a scaling parameter. To summarize the persistence of these features, a 2D scatter plot
known as a Persistence Diagram is created, allowing for the identification of noteworthy
topological features. For a thorough description of persistent homology and its application
in various fields, readers can refer to [EH+08; PLX22].

In our context, the topological features are the connected subgraphs of Gs, and the
scaling parameter is the edge weight. The graph clustering algorithm consists of three
steps:

1. Computing the persistence of connected subgraphs

2. Identifying connected subgraphs related to motif sets from the persistence diagram

3. Forming clusters from the chosen connected subgraphs

Computing the persistence of connected subgraphs

A graph filtration. The persistence of connected subgraphs of Gs is computed through
a sequence of nested graphs. The sequence starts with the empty graph and adds edges
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one by one, in order of increasing weight until it reaches the final graph. In persistent
homology, such sequence is called a filtration. There are several types of filtration, and
we have implemented the Nearest Neighbor Vietoris-Rips Filtration (NNVR) [BTO24].

Definition 11 (Nearest Neighbor Vietoris-Rips Filtration). Let G = (V,E) be a weighted
graph with (wi)i=1,...,m being the edge weights in ascending order. The nearest neighbor
Vietoris-Rips filtration is the sequence of nested graphs:

∅ = Gw1 ⊊ Gw2 ⊊ . . . ⊊ Gwm−1 ⊊ Gwm = G

where ∅ is the empty graph and Gwi = (Vwi , Ewi) such that:

Vwi =

{
vx ∈ V | min

(vx,vy ,wxy)∈E
wxy ≤ wi

}

and
Ewi = {(vx, vy, wx,y) ∈ E | wxy ≤ wi}

Tracking the persistence of connected subgraphs. By convention, when adding an
edge in the filtration, the nodes it connects are added first if they are not already in the
filtration, then the edge itself is added. If both nodes need to be added, one is arbitrarily
added before the other. Alongside the filtration, we keep track of the birth and death
dates of connected subgraphs:

• Birth: The birth of a connected subgraph occurs when a node is added to the
graph; its birth date is equal to the weight of the associated edge.

• Death: A connected subgraph dies when an edge connects it to an older connected
subgraph. Its death date is equal to the weight of the connecting edge.

By definition, each subsequence is the seed node of a connected subgraph, so they
all have a birth date equal to the distance to their nearest non-overlapping neighbors.
Since the graph of a time series Gs is connected, one connected subgraph never dies; its
death date is set to +∞. We denote (bi, di)i∈I as the set of birth and death dates of
all connected subgraphs traced by the filtration. The persistence of the ist connected
subgraph corresponds to its lifetime: di − bi. The connected subgraphs are summarized
with a 2D-scatterplot called Persistence Diagram, where births are on the x-axis, and
deaths are on the y-axis. Each point is counted with multiplicity since several connected
subgraphs can have the same birth and death dates.

An example. Figure 3.5 shows milestones of an NNVR filtration on a graph (Figure 3.5a
to Figure 3.5g) and the corresponding persistence diagram (Figure 3.5h). When weight
w = 1, node 3 has killed nodes 4 and 5, so their persistence is zero. With weight w = 2,
node 0 kills node 1 to form a second independent connected subgraph. Then, nodes 6, 2,
7, and 8 are added and immediately killed for weights w = 2, 3, 10, and 12. At weight
w = 15, the subgraph associated with node 0 is killed by that of node 3 and the graph
is complete. The highest point (in red) on the persistence diagram corresponds to the
subgraph that never dies.
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Algorithm 7 ComputePersistence
Require: G = (i, j, wij)(i,j)∈I a graph, I is sorted by weight.
1: P ← {} Parent dictionary, B ← {} Birth dictionary, D ← {} Death dictionary,

MST ← () Minimum spanning tree
2: for (i, j) ∈ I do
3: P1 ← FindParent(i)
4: if P1 is empty then
5: P[i]← i, B[i]← wij

6: P2 ← FindParent(j)
7: if P2 is empty then
8: P[j]← j, B[j]← wij

9: if P1 ̸= P2 then
10: if B[P1] < B[P2] then
11: P[P2]← P1, D[P2]← wij

12: else
13: P[P1]← P2, D[P1]← wij

14: MST.append((i, j, wij))
15: return B,D,MST

Computing the births and deaths. The birth and death of connected subgraphs
are tracked by maintaining a union-find data structure throughout the filtration. The
algorithm is equivalent to the Kruskall’s algorithm for computing the minimum spanning
tree (MST). Algorithm 7 describes the procedure for computing the connected subgraphs
persistence from a graph whose edges are ordered by increasing weight. The FindParent
command follows the chain of parent pointers from a query node until a root node. This
root node represents the connected subgraph to which the query node belongs. The
algorithm also stores the MST to efficiently retrieve the clusters later on.

Identifying connected subgraphs related to motif sets from the persistence
diagram

An interpretable persistent diagram. As shown in Figure 3.6a, the persistence
diagram can be divided into three interpretable regions:

1. Top-left corner: Points represent connected subgraphs associated with motif sets.

2. Lower-left corner: Points represent connected subgraphs associated with minor
variations of the motif sets.

3. Right side: Points represent connected subgraphs associated with irrelevant parts
of the time series.

On one hand, the graph associated with a time series is constructed so that non-
repeating or noisy linear subsequences are far from any other subsequence. Thus, connected
subgraphs composed of these subsequences have a late birth and are located in the
right part of the persistence diagram. On the other hand, subsequences that overlap
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Figure 3.6 (a) Diagram partition: Top-left corner, points associated with motif sets. Lower-
left corner, points associated with subparts of motifs sets. Right side, irrelevant parts of the time
series. (b) Persistence threshold heuristic: The orange line is the persistence threshold of
the largest gap, and the green line is the threshold of the second largest gap.

any occurrence of a repeated pattern are close to each other and far from all other
subsequences. The connected subgraphs associated with repeated patterns have early
births and late deaths. They are located in the top-left corner of the persistence diagram.
Finally, the lower-right corner corresponds to connected subgraphs associated with minor
variations of repeated patterns.

Inferring the cluster thresholds. The region associated with motif sets can be isolated
with a vertical line and an off-diagonal line as presented in Figure 3.6-A. The vertical line
corresponds to a threshold on birth dates (bcut). It defines the difference between irrelevant
subsequences and subsequences belonging to motif sets. This threshold is computed
with Otsu’s method [Ots79], an algorithm introduced in image processing to transform
a grayscale image into a black-and-white image. The off-diagonal line corresponds to
a threshold on the persistence (pcut). Connected subgraphs associated with motif sets
have a persistence greater than this threshold. To discover N motif sets, the persistence
threshold is set to the average between the N -th and (N+1)-th most persistent connected
subgraphs whose birth dates are less than the birth threshold.

Create clusters from the selected connected subgraphs

The clusters are computed by maintaining a union-find data structure throughout the
filtration of the minimum spanning tree (MST) of Gs. The MST is computed in the first
clustering step (Section 3.3.2), and it is the smallest graph that contains all information
about the birth and the death of all the connected subgraphs traced by the filtration of Gs.
The algorithm that computes the clusters is similar to the ComputePersistence algorithm
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Algorithm 8 ComputeMotifSets
Require: S time series, I indexes of subsequences in clusters, C cluster dictionary, B

birth dictionary, l subsequence length.
1: O ← {} Occurrence dictionary, IDX ← () Index to keep, M ← () Motif sets,

p_idx← I[0]− 1 Previous index, o_id← 1 Occurrence ID
2: for i ∈ sort(I) do
3: if (i− 1 ̸= p_idx) or (C[i] ̸= C[p_idx]) then
4: o_id← o_id+ 1
5: O[i]← o_id
6: I ′ ← BirthOrderedIndex(I,B) ▷ order the index list I by increasing order of birth

date.
7: for i ∈ I ′ do
8: IndexToKeep = True
9: J ← OverlappingIndex(i, IDX, l) ▷ select index in IDX overlapping with i.

10: if J is not empty then
11: for j ∈ J do
12: if O[i] ̸= O[j] then
13: IndexToKeep = False
14: break
15: if IndexToKeep is True then
16: IDX.append(i)
17: M ←MotifSetsFromSubsequences(S, IDX, C, l)
18: return M

(Algorithm 7) with two modifications. Specifically, the edges connecting two connected
subgraphs with persistence higher than the persistence threshold are not considered when
going through the filtration. This is done by changing the condition of the if-loop Line 9
to (P1 ̸= P2) + ((wij − B[P1] ≤ pcut) ∗ (wij − B[P2] ≤ pcut)). Second, after the main
for-loop, the parent dictionary is updated, and the nodes whose birth date exceeds the
birth threshold are removed. Ultimately, the algorithm returns N clusters from the parent
dictionary, each composed of subsequences of length l of s.

3.3.3 From clusters to motif sets

Merging time adjacent subsequences. Recall that a motif set is a set of non-
overlapping subsequences of possibly varying length where elements of each motif should
represent occurrences of the same repeated pattern. Our clustering approach produces
clusters of overlapping subsequences, which must be refined to create a motif set. In
particular, we merge specific overlapping subsequences to form a single one representing
an occurrence. To that end, subsequences with the latest birth date are removed until
the non-overlapping constraint is satisfied when merging subsequences into a single one
per occurrence. The refined clustering is then a motif set.
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Algorithm 9 AdaptivePersistenceThreshold
Require: B birth dictionary, D death dictionary, bcut birth threshold, M number of gap
1: P ← () persistence list, pcut ← 0 persistence threshold
2: for i = 1, . . . , n− l + 1 do
3: if B[i] ≤ bcut then
4: P.append(D[i]− B[i])
5: P ← Sort(P )
6: for i = 1, . . . ,M do
7: j ← argmax(P ), pcut ← (P [j + 1]− P [j])/2
8: P ← P [0 : j + 1]
9: return pcut

Computing motif set.Algorithm 8 shows the procedure for computing the motif sets
from clusters. The first for-loop computes the occurrence membership of all subsequences.
Two subsequences belong to the occurrence if they are in the same cluster like all
temporally consecutive subsequences between them. The second for-loop refines the
clusters to enforce the non-overlapping constraint. If a subsequence overlaps with at least
one subsequence of another occurrence with an earlier birth date, it is removed from
its cluster. Finally, the motif sets are formed by merging the temporally consecutive
subsequences in each cluster.

3.3.4 Adaptive algorithm: A-PEPA

In this section, we present an adaptive version of the PEPA algorithm called A-PEPA,
which infers the number of motif sets from the persistence diagram. The only difference
between PEPA and A-PEPA is the computation of the persistence threshold.

The PEPA algorithm isolates motif sets with a birth threshold and a persistence
threshold based on the number of motif sets to discover. The adaptive version of the
algorithm, A-PEPA, infers the persistence threshold by looking at successive gaps in
persistence as shown in Figure 3.6b. A large gap indicates that repeated patterns (points
above the gap) significantly differ from all other patterns in the time series (points below
the gap). Depending on the application, the second or higher-order gap may be more
interesting than the largest; some variations of more persistent repeated patterns should
be considered as different motif sets. Algorithm 9 shows the procedure for computing the
adaptive persistence threshold. In practice, we set the adaptive persistence threshold to
the second-largest persistence gap.

3.3.5 Time complexity and parameter tuning

Time complexity. The time complexity of PEPA and A-PEPA is in O(Kn2), where n
is the length of the time series, and K is the number of nearest neighbors.

Indeed, the graph Gs is computed in O(Kn2) by following the procedure of the STOMP
algorithm [Zhu+16]. The graph clustering algorithm is in O(Kn log(Kn)) in the worst
case because the Algorithm 7 requires maintaining a union-find data structure over Gs
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which has Kn edges. The computation of both thresholds is in O(n), and the algorithm
that computes the clusters from the selected connected subgraphs is in O(n log(n)) since
it requires maintaining a union-find data structure of the MST of Gs which has n edges.
The Algorithm 8 is in O(n log(n)) in the worst case because it requires sorting the
subsequences by increasing order of birth dates. The bottleneck of PEPA and A-PEPA is
the computation of the graph in O(Kn2).

Parameter tuning. The PEPA algorithm has three parameters:

• The number of motif sets to discover: N ∈ N∗. Note that this number is empirically
estimated when using A-PEPA.

• Two parameters linked to the graph construction: the length of subsequences l ∈ N∗

and the number of nearest neighbors K ∈ N∗.

Like other motif discovery algorithms, setting the number of motif N depends on
expert knowledge. However, with PEPA, this number can be deducted through the
persistence diagram, Figure 3.6, and the motifs sets can be updated in O(n log(n)).

Empirical results (Section 3.5.3) shows that PEPA and A-PEPA are not sensitive to
the number of neighbors K when it exceeds 5 (the relative error to the optimal is less
than 1%). As this parameter influences the algorithms’ computational time, we advise
setting it to 5.

Experiment on the influence of the window length l (Section 3.5.3) shows that PEPA
and A-PEPA retrieve motifs whose length are at most twice the window length. In
practice, we recommend setting it to the length of the smallest motif.

3.4 Experimental settings

This section describes the datasets, performances metrics and the algorithms implementa-
tion details for our experimental evaluation. For reproducibility, the source code and all
datasets are available on a Github repository1

3.4.1 Datasets

We conducted the experiments on 9 labeled datasets constructed from real and synthetic
time series. Table 3.2 presents the main characteristics of the datasets related to motif
set discovery. While the following paragraphs succinctly describe the datasets, a detailed
presentation of each dataset can be found in Appendix A.1.

Real-world data. We have considered the following real-world univariate datasets:

(R-1) mitdb-1: ECGs from the The MIT-BIH Arrhythmia Database [Gol+00; MM01].
It contains 100 time series randomly selected from healthy patients such that they
only contain normal heartbeats.

1https://github.com/thibaut-germain/Persistent-Pattern-Discovery

https://github.com/thibaut-germain/Persistent-Pattern-Discovery
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(R-2) mitdb-2: We randomly selected 100 ECGs from MIT-BIH. The number of repeated
patterns varied between 1 and 4.

(R-3) mitdb800: ECGs sampled at a lower frequency than MIT-BIH. It results in a
dataset containing a 100 long time series with a number of repeated patterns that
vary between 1 and 4.

(R-4) ptt-ppg: Photoplethysmogram (PPGs) from the Pule-Transit-Time PPG dataset
[Meh+22]. It contains 100 time series of a single pattern randomly selected from
running subjects.

(R-5) refit: Aggregated time series of electrical consumptions of dishwasher, food mixer,
washing machine, and tumble dryer for 10 houses. We kept 10 time series for each
house in which the appliances were not used simultaneously. It resulted in a dataset
of 100 time series with a maximum of 3 motif sets.

(R-6) arm-coda: Trajectories from the arm-coda datasets [Com+24]. It contains 64 time
series of subjects performing various upper-limb movements.

Synthetic data. We have generated three datasets following three scenarios of increasing
order of complexity for motif discovery:

(S-2) single: For similarity search. There is 1 pattern of length 100 that repeats 50 times.
The dataset contains 100 time series.

(S-3) fixed: There are 5 patterns of length 100. For each pattern, the number of
occurrences is sampled uniformly between 2 and 10. The dataset contains 100 time
series.

(S-4) variable: There are 5 patterns with length uniformly sampled between 100 and
200. For each pattern, the number of occurrences is sampled uniformly between 2
and 10. The dataset contains 100 time series.

3.4.2 Performance metrics

We evaluate the performance with precision, recall, and f1-score metrics [Tat+18]. However,
motif discovery in time series is an unsupervised task, and compared to supervised tasks,
the computation of these metrics requires the additional step of pairing real and predicted
motif sets. This step is a two-level assignment problem: predicted motif sets must be
assigned to real motif sets, and predicted occurrences must be assigned to real ones
between paired motif sets. The optimal pairings maximize the total overlapping length
between real and predicted motif sets, and they can be efficiently computed with the
Hungarian matching algorithm [Kuh55; Sar+21]. The precision, recall, and f1-score
computation rely on the optimal pairings and a threshold τ ∈ [0, 1] that controls the
overlapping ratio. Any metric’s score is the average of the individual metric score between
paired motif sets; the averaging can be macro or weighted. For precision (resp. recall),
a motif occurrence is counted as a true positive if the ratio between the overlap length
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Table 3.2 N number of repeated patterns, if < k, there are at most k patterns. µl average
pattern length, σl standard deviation of pattern length, min/max minimum/maximum pattern
length, n time series length, # number of time series.

Type Name N µl σl min/max n #

real (R-1) mitdb-1 1 320 60 215/461 20k 100
(R-2) mitdb-2 < 4 280 70 69/496 20k 100
(R-3) mitdb800 < 4 95 25 24/165 20k 100
(R-4) ptt-ppg 1 325 45 201/461 20k 100
(R-5) refit < 3 100 20 47/143 20k 100
(R-6) arm-coda 5 525 105 272/886 8k 64

synthetic (S-2) single 1 100 0 100/100 8k 100
(S-3) fixed 5 100 0 100/100 3k 100
(S-4) variable 5 150 30 100/200 4k 100

and the predicted (resp. real) occurrence length is greater than the threshold τ . This
threshold is set to 50% for all experiments. The resolution of the motif sets assignment
problem and the metrics’ computation are detailed in Appendix A.2.

We also rank methods according to the f1-score and compute critical difference
diagrams [Dem06]. The associated test significance level is set to 0.05. We use Friedman’s
test to reject the null hypothesis, and we compute the critical differences using Nemenyi
post-hoc test.

3.4.3 State-of-the-art methods and implementation details

The evaluation was performed on a server with Intel(R) Xeon(R) Gold 5220R CPU
@ 2.20GHz, and 250 GB of RAM. We compared PEPA and A-PEPA with SetFinder
(SF) [BHL14], LatentMotif (LM) [GSS16], Grammarviz (GM) [Sen+18], MDLC (MC)
[Rak+12a], STOMP (SM) [Zhu+16], and VALMOD (VM) [Lin+18]. For fairness, we
implemented all of the algorithms in Python except Grammarviz. Indeed, they all rely
on a fast computation of the distance profiles, and we implemented a common structure
based on the algorithms [Zhu+16].

VALMOD algorithm efficiently computes all matrix profiles within a subsequence
length range thanks to STOMP algorithm and a pruning strategy. Therefore, STOMP
algorithm provides a lower bound of VALMOD scalability performances. For simplicity,
we implemented a greedy version of VALMOD algorithm that does not consider the
pruning strategy. Predicted motif sets remain identical, and we use STOMP algorithm as
a lower bound for VALMOD scalability performance.

For Grammarviz, we used a JAVA implementation provided by the authors [Sen+18].

3.5 Experimental Evaluation

Our experimental evaluation has four components:

• A qualitative evaluation on physiological signals,Section 3.5.1.
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• A quantitative comparison of PEPA and A-PEPA with 6 state-of-the-art algorithms
on several labeled real and synthetic datasets, Section 3.5.2.

• Several experiments to show the influence of the main parameters of PEPA and A-
PEPA: the subsequence length, the number of nearest neighbors, and the persistence
threshold heuristic for A-PEPA, Section 3.5.3.

• A scalability experiment, Section 3.5.4.

3.5.1 Qualitative evaluation

Figure 3.7 (left): persistence diagrams, (middle): time series with colored motif sets, (right):
motif sets with barycenters. (a) Electrocardiogram: ECG of a patient with premature ven-
tricular contraction (PVC). The persistence diagram shows two significant motif sets; pattern 0
represents heartbeats with PVC, and pattern 1 represents normal heartbeats. Vertical dashed
lines on the time series plot indicate the start location of the pattern occurrences. (b) Elec-
troencephalogram: single-channel EEG of a patient in a second stage of sleep. The persistence
diagram indicates two significant motif sets; pattern 0 represents K-complexes, and pattern 1
represents sleep spindles. Both patterns represent short bursts of brain activity that help resist
awakening by external stimuli.

In this section, we illustrate the visual interpretability of our algorithm and its ability
to detect meaningful patterns in two types of physiological data.

ECG data. Electrocardiograms of patients suffering from premature ventricular
contractions (PVCs) contain a typical pattern for normal heartbeats and another typical
pattern for heartbeats with PVCs. Several ECGs in the mitdb800 database correspond to
patients suffering from PVCs, and we ran the adaptive algorithm on a 16-second portion
of one of them. We set the window length to 500ms and the number of neighbors to
5. The persistence diagram, Figure 3.7a (left), suggests that two motif sets have been
properly isolated with the birth and persistence thresholds. Figure 3.7a (right) shows the
motif sets; the first set corresponds to heartbeats with PVC, and the second corresponds
to normal heartbeats. Figure 3.7a (middle) shows that all heartbeats are detected and
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well classified except one normal heartbeat. Illustrations of motifs sets discovered with
other motif discovery algorithms can be found in supplementary material.

EEG data. During the second stage of sleep, the brain activity slows down, except
for short bursts of activity that help resist awakening by external stimuli. On an
electroencephalogram (EEG), these short bursts of activity fall into two categories: the
K-complexes and the sleep spindles [Mue+09]. A K-complex is the succession of high-
voltage positive and negative peaks that last for about 600ms and occur every 1 or 2
minutes. Sleep spindles correspond to 11 to 16 Hz voltage oscillations and last for about
0.5 to 1.5 seconds. We ran the adaptive algorithm on the EEG of a patient in the second
stage of sleep [Mue+09]. It is a single-channel EEG sampled at 100hz, and we selected a
500-second window. We set the window length to 1 second and the number of neighbors
to 5. The persistence diagram, Figure 3.7b (left), shows that the algorithm has detected
two motif sets. The first motif set gathers K-complexes, and the second set corresponds
to sleep spindles, Figure 3.7b (right).

In both cases, the algorithm has detected patterns that account for the patients’
physiological state. The persistence diagrams ensure the relevance of these patterns
because they significantly detach from the rest of the time series.

3.5.2 Comparison with state-of-the-art algorithms

Experiment presentation. In this experiment, we evaluate the performance of PEPA
and A-PEPA with 6 state-of-the-art algorithms on two tasks of increasing complexity:

• occurrence detection: Ability to localize pattern occurrences regardless of their
motif set membership.

• motif set discovery: Ability to localize pattern occurrences and classify them
according to their motif set membership.

Performances were evaluated in terms of precision, recall, and f1-score (Section 3.4.2) on
all datasets presented in Section 3.4.1.

For PEPA and A-PEPA, the window length is set to the average pattern length minus
its standard deviation, and the number of neighbors is set to 5 for each dataset. For
SetFinder, LatentMotif, STOMP, and VALMOD, the window length is set to the average
pattern length, and the radius is set with a gridsearch on each dataset. For Grammarviz,
the window length is set to the average pattern length; the radius, the alphabet, and the
word size are set with a gridsearch on each dataset. Parameters settings can be found in
supplementary materials.

Results. For the occurrence detection task, results are shown in Table 3.3, and the
critical difference diagram in Figure 3.8. We make several comments:

• PEPA and A-PEPA are the best-performing methods, with a mean rank significantly
higher than other methods.

• Our approach has a relatively low f1-score on the refit data (0.31 only). However, it
is still better than other methods by a margin. Motifs in refit are similar to square
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waves, and normalized Euclidean distances have difficulties fully recovering such
patterns.

• On ptt-pgg, methods based on the Z-normalized distance have low recalls (0.43 at
best), contrary to PEPA and A-PEPA, which have markedly higher recall (0.62
and 0.66) thanks to the LT-normalized distance. Indeed, motifs in PPG signals are
significantly affected by the trend induced by subjects’ motions.

For the motif set discovery task, results are shown in Table 3.4 and Figure 3.9:

• Again, the mean rank of PEPA and A-PEPA are significantly better than other
methods. As the number of motifs is known, PEPA performs better than A-PEPA.
Therefore, if a good calibration of PEPA is possible, it should be preferred over the
adaptive scheme.

• Overall, f1-scores are lower on the motif discovery task because pattern occurrences
must be classified, not just localized.

• Unlike A-PEPA, MDLC performances drop significantly from occurrence detection
to motif set discovery. MDLC groups detected occurrences in too many sub-clusters,
whereas A-PEPA better estimates the number of motifs as depicted in Section 3.5.3.

3.5.3 Influence of the parameters

In this section, we evaluate the influence of three parameters: the window length, the
number of neighbors, and the persistence threshold heuristic in A-PEPA.

Influence of the window length. Our approach is tested on dataset (S-3), where all
patterns have the same length. We run each algorithm with the window length parameter
ranging from 50% to 150% of the pattern length. All other parameters are identical to
those defined previously. For VALMOD and MDLC, the minimum/maximum window
lengths are 50%/150%.

The results are shown in Figure 3.10. PEPA performs better than other methods for
all metrics and most window lengths. Its f1-score is stable and close to the maximum
for window lengths between 80% and 100%, proving its robustness to the window length
parameter. A-PEPA has the best precision, but its recall drops as the number of motifs
tends to get overestimated. However, its f1-score remains high and similar to PEPA,
showing its robustness to the window length parameter. In light of this result, we
recommend underestimating the length of the true patterns when using PEPA and
A-PEPA.

Influence of the number of neighbors. Setting the number of neighbors is mandatory
to compute the K-nearest neighbor graph (Section 3.3.1). Theoretically, a larger number
of neighbors leads to better performance but higher computation time and storage. In
this experiment, we measured the relative errors between f1-scores obtained for different
numbers of neighbors and the f1-scores obtained with the whole graph on all datasets. The
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Table 3.3 Occurrence detection. SF: SetFinder, GM: Grammarviz, LM: LatentMotif, SM:
STOMP, VM: VALMOD, MC: MDLC

algorithm SF GM LM SM VM MC PEPA A-PEPA
dataset metric

(S-2) single f1-score 0.98 0.07 0.27 0.71 0.86 0.85 0.96 0.97
precision 0.99 0.69 0.59 0.98 0.97 0.81 0.96 0.98
recall 0.97 0.04 0.19 0.58 0.78 0.89 0.95 0.96

(S-3) fixed f1-score 0.49 0.20 0.50 0.82 0.82 0.66 0.90 0.89
precision 0.59 0.57 0.68 0.82 0.78 0.60 0.94 0.94
recall 0.47 0.13 0.41 0.84 0.85 0.74 0.87 0.85

(S-4) variable f1-score 0.49 0.02 0.48 0.86 0.76 0.76 0.95 0.95
precision 0.81 0.12 0.74 0.87 0.72 0.75 0.97 0.97
recall 0.37 0.01 0.37 0.86 0.83 0.78 0.94 0.93

(R-1) mitdb-1 f1-score 0.34 0.01 0.11 0.58 0.67 0.77 0.71 0.75
precision 0.78 0.20 0.96 0.97 0.95 0.91 0.91 0.92
recall 0.28 0.01 0.06 0.46 0.64 0.68 0.60 0.67

(R-2) mitdb-2 f1-score 0.64 0.03 0.30 0.58 0.68 0.67 0.86 0.87
precision 0.93 0.45 0.97 0.97 0.97 0.86 0.94 0.95
recall 0.53 0.02 0.19 0.44 0.59 0.55 0.80 0.80

(R-3) mitdb800 f1-score 0.75 0.13 0.40 0.56 0.70 0.49 0.89 0.89
precision 0.90 0.96 0.87 0.97 0.98 0.92 0.96 0.97
recall 0.67 0.07 0.28 0.43 0.59 0.34 0.84 0.84

(R-4) ptt-ppg f1-score 0.49 0.01 0.12 0.49 0.52 0.71 0.73 0.75
precision 0.91 0.11 0.92 0.97 0.87 0.85 0.96 0.97
recall 0.38 0.00 0.07 0.36 0.43 0.61 0.62 0.66

(R-5) refit f1-score 0.07 0.14 0.12 0.00 0.01 0.07 0.31 0.29
precision 0.06 0.21 0.17 0.00 0.01 0.05 0.23 0.22
recall 0.17 0.19 0.11 0.02 0.04 0.14 0.56 0.51

(R-6) arm-coda f1-score 0.25 0.00 0.44 0.51 0.28 0.54 0.62 0.59
precision 0.24 0.02 0.54 0.47 0.45 0.50 0.61 0.59
recall 0.38 0.01 0.41 0.58 0.28 0.63 0.66 0.62

Figure 3.8 Occurrence detection critical difference diagram. The rank is based on the f1-score.
PEPA and A-PEPA perform significantly better than any other algorithm. Performances between
PEPA and A-PEPA are not significantly different.

number of neighbors ranges from 1 to 15 for PEPA and A-PEPA, and other parameters
remain identical.

Results shown in Figure 3.11 prove that the number of neighbors has little influence
on the performance of PEPA and A-PEPA. Regardless of the algorithm and for more
than 5 neighbors, the average relative error does not exceed 1%, the average error is less
than 0.05%, and the standard deviation is less than 0.2%. In practice, we recommend
setting the number of neighbors to 5; it leads to good performance while maintaining low
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Table 3.4 Motif set Discovery. SF: SetFinder, GM: Grammarviz, LM: LatentMotif, SM: STOMP,
VM: VALMOD, MC: MDLC

algorithm SF GM LM SM VM MC PEPA A-PEPA
dataset metric

(S-2) single f1-score 0.98 0.07 0.27 0.71 0.86 0.34 0.96 0.84
precision 0.99 0.69 0.59 0.98 0.97 0.99 0.96 0.98
recall 0.97 0.04 0.19 0.58 0.78 0.21 0.95 0.78

(S-3) fixed f1-score 0.34 0.14 0.41 0.66 0.55 0.61 0.84 0.81
precision 0.28 0.20 0.45 0.71 0.54 0.70 0.86 0.85
recall 0.45 0.11 0.41 0.67 0.63 0.57 0.85 0.81

(S-4) variable f1-score 0.32 0.02 0.39 0.72 0.43 0.75 0.80 0.80
precision 0.31 0.02 0.49 0.74 0.42 0.86 0.81 0.82
recall 0.34 0.01 0.37 0.75 0.54 0.71 0.82 0.81

(R-1) mitdb-1 f1-score 0.34 0.01 0.11 0.58 0.67 0.20 0.71 0.45
precision 0.78 0.20 0.96 0.97 0.95 0.98 0.91 0.96
recall 0.28 0.01 0.06 0.46 0.64 0.12 0.60 0.31

(R-2) mitdb-2 f1-score 0.49 0.02 0.24 0.41 0.51 0.31 0.68 0.59
precision 0.66 0.31 0.73 0.73 0.77 0.82 0.75 0.78
recall 0.44 0.01 0.17 0.32 0.47 0.24 0.65 0.53

(R-3) mitdb800 f1-score 0.35 0.06 0.23 0.25 0.33 0.08 0.46 0.41
precision 0.42 0.53 0.49 0.51 0.52 0.71 0.50 0.53
recall 0.34 0.04 0.19 0.22 0.31 0.05 0.45 0.38

(R-4) ptt-ppg f1-score 0.49 0.01 0.12 0.49 0.52 0.19 0.73 0.50
precision 0.91 0.11 0.92 0.97 0.87 0.97 0.96 0.96
recall 0.38 0.00 0.07 0.36 0.43 0.11 0.62 0.37

(R-5) refit f1-score 0.08 0.10 0.10 0.00 0.01 0.07 0.17 0.20
precision 0.07 0.20 0.13 0.00 0.01 0.14 0.14 0.18
recall 0.16 0.16 0.09 0.02 0.04 0.06 0.35 0.33

(R-6) arm-coda f1-score 0.28 0.00 0.39 0.30 0.14 0.53 0.32 0.32
precision 0.21 0.00 0.40 0.31 0.18 0.55 0.30 0.31
recall 0.54 0.00 0.44 0.41 0.19 0.63 0.45 0.45

Figure 3.9 Motif set discovery critical difference diagram. The rank is based on the f1-score.
PEPA performs significantly better than any other algorithm. The second best performer is
A-PEPA. Other algorithms perform significantly worse.

computational time and storage.

Influence of the persistence threshold heuristic in A-PEPA. In this experiment,
we evaluate the ability of A-PEPA to detect the exact number of motif sets, and we
compare its performances with the other adaptive method, MDLC, by measuring the
error between the real and predicted number of motif sets on all datasets presented in
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Figure 3.10 Precision, recall, and f1-score of all algorithms as a function of window length. The
experiment is run on the fixed dataset, and the window length is expressed as a percentage of the
pattern length. The performance in f1-score of PEPA and A-PEPA is similar. They outperform
all other algorithms in their best configuration over a wide range of window lengths.

Figure 3.11 Average f1-score relative error per dataset as a function of the number of neighbors
for PEPA and A-PEPA and on all datasets. The baselines correspond to the scores obtained on
the whole graph. For both algorithms, the relative error is less than 1% for more than 5 neighbors
and never exceeds 9%.

Section 3.4.1. We set the persistence threshold heuristic of A-PEPA on the second-largest
gap. It enforces A-PEPA to consider variations of the most persistent subgraphs as
potential motif sets. The results are shown in Figure 3.12.

On all datasets except arm-coda (R-6), A-PEPA better estimates the number of
motifs compared to MDLC. The average absolute mean error is 2.1 for A-PEPA and 12.0
for MDLC, with a standard deviation of 2.4 vs 10.8. It reflects the performance drop
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Figure 3.12 Boxplots of the error in estimating the number of motif sets with A-PEPA for all
datasets.

observed in Section 3.5.2 when MDLC clusters detected occurrences, whereas A-PEPA
better retrieves the number of motif sets thanks to the persistent diagram.

Congruently with its heuristic settings (second most persistent gap), A-PEPA over-
estimates the number of motifs on single motif datasets: single (S-2), mitdb-1 (R-1),
ptt-ppg (R-4). The number of motif sets is also greatly overestimated in rare cases for
mitdb-2 (R-2), mitdb800 (R-3); the second gap leads to the inclusion of many sub-motif
sets. However, the estimation is more accurate for datasets with a larger number of motif
sets and shows less variability.

In practice, we recommend setting the persistence threshold heuristic to the largest or
second largest gap. Alternatively, the relevance of the threshold can be verified with the
persistence diagram, and recomputing of motif sets is done in O(n log(n)) in the worst
case according to Section 3.3.5.

3.5.4 Scalability

In this experiment, we evaluated the scalability with the time series length of PEPA and
state-of-the-art algorithms.

Experiment presentation. We evaluated the algorithm runtime on a dataset consisting
of synthetic time series of the following lengths: 10K, 50K, 100K, 500K, and 1M. We
generated 10 time series for each length following the fixed scenario (S-3) and only modified
the space between successive occurrences. We did not consider Grammarviz, since it is
implemented in Java, and VALMOD, since we implemented a greedy version that does
not consider its pruning strategy. Nevertheless, the performance of STOMP is a lower
bound of the performance of VALMOD since it runs STOMP as an initialization. We
considered the algorithms SetFinder, LatentMotif, STOMP, MDLC, PEPA, and A-PEPA.
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Figure 3.13 Algorithms scalability with the length of the time series. SF: SetFinder, LM:
LatentMotif, SM: STOMP.

The parameters of each algorithm were identical to those defined in the benchmark for
the fixed dataset. The timeout was set to 24 hours.

Results. The average runtimes per length are shown in Figure 3.13. MDLC is the worst
time-performing algorithm and times out after 100K. SetFinder does not scale with the
length of the time series and times out after 500K. On the other hand, LatentMotif is
the fastest for large lengths (>300K), but it is slow for small lengths (<50K). This trend
is due to the optimization scheme that limits the number of distance profiles computed.
PEPA A-PEPA and STOMP scale according to their quadratic time. PEPA and A-PEPA
performances are identical. STOMP is slightly faster than PEPA, but its advantage
decreases as the length of the time series increases. Indeed, STOMP has to recompute
some distance profiles to create the motif sets, while PEPA creates motif sets from the
precomputed graph.

3.6 An application for interactive motif discovery

The PEPA algorithm can be naturally declined in an interactive and user-friendly appli-
cation thanks to three characteristics:

• A visual interpretation of the time series: Once the graph of a time series is
built, it is easy to set the parameters that define the motif sets, namely the birth
and persistence threshold, thanks to the visual interpretation of the persistence
diagram (see Section 3.3.2).

• A fast computation of the motif sets: Once the thresholds are defined, the time
to compute the motif sets is linear in the length of the time series (see Section 3.3.5).
As a result, adjusting the thresholds results in near-instantaneous updates of the
motif sets, enabling real-time interactivity between the user and the algorithm.

• Heuristics to adjust the parameters: Once the graph is built, 4 parameters can
be modified, and we have proposed heuristics to set them. On the persistence dia-
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gram, the birth threshold can be set with the Otsu heuristics (see Section 3.3.2), and
the persistence threshold can be set from the jumps in persistence (see Section 3.3.4).
However, motifs can be sensitive to these thresholds, but their adjustment can
be facilitated by modifying the (α, β)-rectification of the distance. A heuristic for
setting the rectification and its implication in the PEPA algorithm is discussed in
the following paragraph.

Setting the (α, β)-rectification.Sometimes, points on the persistence diagram cluster
around the bottom-left corner, indicating that the distance is overly permissive, treating
all subsequences as highly similar. Conversely, when points concentrate in the top-right
corner, the distance is too restrictive, classifying subsequences as highly dissimilar. In
these extreme cases, the motif sets become sensitive to the birth and persistence thresholds,
as the points are confined to a limited region of the persistent diagram. There is a need
to expand the decision area by spreading the points on the persistence diagram.

The (α, β)-rectification provides a solution to that issue (see Section 3.3.1). Precisely,
the rectification adjusts the distance permissiveness and restrictiveness. With a judicious
choice of the (α, β) parameters, the rectification counteracts the concentration effect
by spreading the points on the persistence diagram. It is important to note that the
rectification function is strictly increasing for any choice of (α, β) parameters. As a
result, changes in these parameters do not alter the structure of the connected subgraphs
tracked during filtration; only their birth and death dates are affected. Modifying the
rectification implies only changing the weights of the minimum spanning tree extracted
during the filtration. Similar to the birth and persistence thresholds, the time to compute
the modifications induced by the change of rectification is linear in the length of the time
series.

To facilitate the distribution of points on the persistence diagram, we propose a heuris-
tic for selecting the parameters α and β. It involves solving the following optimization
problem:

(α∗, β∗) = argmin
(α,β)∈R∗

+×[0,2]
DC.S(Bα,β, U[0,2]) (3.4)

where DC.S is the Cauchy Schwartz divergence [KHP11], Bα,β is the Gaussian kernel
densities associated to the (α, β)-rectified birth dates, and U[0,2] is the densities of the
uniform distribution on [0, 2]. The goal is to find the parameters that uniformly spread the
birth of the connected subgraphs along the interval [0, 2]. The convexity of the problem is
not guaranteed, and we perform a non-exhaustive grid search to find suitable parameters.
This heuristic is computationally efficient for short time series, but the search process can
become time-consuming for longer ones. Enhancements to the optimization procedure
could further improve its performance in such cases.

The operating system. The system is implemented in Python with the Dash library.
It is accessible from a webpage2 or can be run locally3. We also provide a demonstration

2Webpage: https://persistent-pattern-discovery.onrender.com
3Github: https://github.com/thibaut-germain/Persistent_Pattern_Discovery_App

https://persistent-pattern-discovery.onrender.com
https://github.com/thibaut-germain/Persistent_Pattern_Discovery_App
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Step 1

Step 2 Step 3

Figure 3.14 The application interface: the user has discovered normal and abnormal heartbeats
in an ECG.

video4.
The user interface follows the workflow of the PEPA algorithm (see Figure 3.3), and

it is divided into three blocks as depicted in Figure 3.14:

• Upper block (red): Associated with the "From time series to graph" step, the
user uploads a time series, sets parameters related to the graph construction, and
runs it.

• Middle left block (green): Associated with the "Graph clustering with persistent
homology" step, it is the core interactive component of the system. The user can
modify the distance function and set the thresholds from the resulting persistence
diagram to his wish.

• Middle right & lower blocks (blue): Associated with the "From clusters to motif
sets" step, the lower block displays the time series and highlights the discovered
motifs. The middle-right block displays motifs individually.

After step 1, the system stores the time series, the graph, and the persistence diagram.
These elements allow smooth back and forth between steps 2 and 3, providing a playground
for deepening the user’s knowledge about the time series. We also provide detailed
guidelines and information in the system itself.

An use case: the detection of abnormal heartbeats in an ECG. The MIT-BIH
dataset compiles ECGs from patients experiencing premature ventricular contractions
(PVCs). In Figure 3.14, we explore a 16-second recording segment. The signal is displayed
as soon as it is uploaded. Then, after computing the graph, the user optimizes the
visualization of the persistence diagram by automatically setting the (α, β)-rectification
with the Spread button, which runs the heuristic defined in Equation (3.4). The persistence

4Demonstration video: https://youtu.be/F2bwCKiR-i8

https://youtu.be/F2bwCKiR-i8
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diagram suggests two motifs and a clear distinction between the motifs and the irrelevant
part of the signals. By clicking on the Automatic cut button, the user runs the heuristics
that set the persistence and the birth thresholds. After applying the changes, the motifs
are displayed; the red motif corresponds to the normal heartbeats, while the blue motif
corresponds to the abnormal ones, which account for the PVCs. Thanks to the system’s
responsiveness, the user can adjust the rectifications and the thresholds to define the
motif sets accurately.

Conclusion. In this chapter, we have presented a novel motif discovery algorithm, PEPA,
that overcomes the limitations of prior approaches by leveraging persistent homology.
Unlike traditional methods, we abandoned the restriction of motif sets to be included
within balls whose radius is based on a predefined similarity threshold. Instead, we
leverage persistent homology to track the sets of subsequences that remain consistent
across a wide range of similarity thresholds. These stable, corresponding to motif sets, are
easily identifiable from the persistent diagram, a visual representation of the time series.
We also proposed an A-PEPA, an adaptive version of the algorithm that infers the number
of motif sets to discover from the persistent diagram. The experiments demonstrate that
both algorithms significantly outperform state-of-the-art algorithms while maintaining
comparable computational complexity. We also leveraged the algorithm’s interpretability
and efficiency to create an interactive and user-friendly application dedicated to motif
discovery.
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Chapter 4

Mice ventilation analysis and its application to the
study of the cholinergic system

Key points:

1. This chapter provides the biological context that motivates the development
of the methods discussed in the subsequent chapters.

2. Mouse respiration can be monitored using plethysmography, with the resulting
signals reflecting the mouse’s physiological state. Analyzing such signals
is valuable in various settings, such as studying the effects of drugs on the
respiratory system, monitoring mouse models of human diseases, or assessing
airway irritants. This thesis analyzes the impact of inhibiting an enzyme
involved in the respiratory control through drug exposure across different
mouse genotypes.

3. However, current approaches primarily focus on critical descriptors such as
duration or inhaled volume, neglecting the full dynamics captured by the
shape of the respiratory cycle, highlighting the need for shape-based analysis
methods.

Contributions:

1. This chapter introduces a new algorithm for segmenting mice respiratory
cycles (inspiration and expiration) from plethysmography signals. By in-
corporating physiological constraints, the method accurately detects the
start of inspiration and expiration, offering greater robustness to respiratory
variations compared to previous approaches.
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This chapter introduces the applicative context that inspired the content of the
following two chapters. Rather than serving as a comprehensive state-of-the-art review, it
aims to provide an introduction to the biological context, offering a clearer understanding
of the proposed methodological tools. The primary objective of the application is to
study mice ventilation and its changes when exposed to toxic molecules. For clarity,
the physiological mechanisms involved in breathing are simplified, focusing only on the
functions relevant to the study of mice respiration.

4.1 Analyzing mice ventilation from plethysmography signals

Respiration is a fundamental physiological function that ensures the vital supply of O2
during inspiration and the elimination of CO2 during expiration. However, breathing can
vary depending on an organism’s physiological and environmental context. For instance,
the breathing rate increases during prolonged physical effort to meet the body’s O2
demands. The body also protects the lungs against potentially toxic invaders through
various protective mechanisms. For example, the inhalation of chili peppers triggers
reflexes, or more appropriately, different reflexes are triggered by different stimuli: some
cause coughing, others sneezing, bronchoconstriction, and so on. Assessing ventilation
and its alterations in response to physiological or environmental changes in conscious,
spontaneously breathing animals is crucial in various applications, such as studying the
effects of drugs on the respiratory system [Mur02], monitoring mouse models of human
diseases [Wil+17], or evaluating airway irritants [Vij+93]. Ventilation is typically accessed
from the respiratory airflow signal recorded with plethysmography techniques.

4.1.1 Plethysmography

For mice, several plethysmographs exist: whole-body (WBP, [BT70]), dual-chamber (DCP,
[Hoy12]), head out-of-body (HOP, [Vij+93]). All plethysmographs have essentially the
same functioning; a mouse is placed within an airtight box, and its breathing induces
air volume changes that are recorded using pneumotachographs or pressure transducers,
which convert them into airflow or a pressure signal. The choice between them is based
on a trade-off between invasiveness and accuracy of measurement [BI03].

For WBP, the mouse is placed in near-natural conditions (the mouse is neither
anesthetized nor constrained in its movements): it is a small box where the mouse



4.1. Analyzing mice ventilation from plethysmography signals 83

is not restrained and can move freely. The pressure difference between the box and
the atmosphere is measured over time, reflecting changes in volume, humidity, and
temperature of the air entering and leaving the mouse’s lung. However, the ventilation
function is poorly measured due to the artifact induced by the mouse movements, and the
experiment reproducibility depends on many environmental parameters [BI03; Bru+22].

The DCP consists of two sealed compartments, with the animal’s head in one com-
partment and its body in the other. The mouse is not anesthetized but it is constrained
in a tube with the nose pointing into the nasal compartment (respiration is primarily
nasal in mice) [Mai+18]. This device allows for independent monitoring of the nasal
airflow and the airflow caused by the thoracic movements of an animal. DCP is a relevant
approach for assessing the ventilatory mechanics of the respiratory system, and it provides
information on ventilatory and lung function [Hoy12]. As the mouse is constrained, the
duration of respiration recording is limited to less than one hour. As an alternative,
the HOP uses only the thoracic compartment, imposing less constraint on the mouse
[Vij+93]. Recordings from DCP and HOP directly reflect the air inhaled and exhaled
during respiration. These methods have been used for several decades to monitor changes
in mouse respiration caused by airborne chemicals on the airways [Vij+93] and have
been improved to limit air leakage from collar [Bru+22]. Figure 4.1 describes the DCP
functioning and the mouse respiratory system while Figure 4.2 presents a real example of
nasal airflow signal. Thoracic airflow looks similar to nasal airflow, and by convention, a
positive nasal airflow indicates an inspiration, and a negative nasal airflow indicates an
expiration.
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DiaphragmTrachea

Nasal cavity Lungs

Figure 4.1 Double chamber plethysmograph (DCP) and mouse respiratory system. dpt stands
for differential pressure transducer which measures the pressure then converted in airflow. DCP
measures the nasal airflow (airflow coming in and out the nasal cavity), and the thoracic airflow
(changes in the volume occupied by the chest cage).

4.1.2 Inferring ventilation modalities from airflows.

Respiratory cycle, the ventilation atom. Breathing consists of a succession of
respiratory cycles, each composed of an inspiration followed by an expiration. Inspiration
is an active phase in which the diaphragm muscle contracts, expanding the chest cavity
and creating negative pressure causing the lungs to fill with air. Expiration is a passive
phase in which the diaphragm and chest muscles relax, reducing lung space, which expels
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Figure 4.2 Nasal airflow. During inspiration, the airflow is positive (green) and during expiration,
the airflow is negative (red).

CO2-rich air by pressure difference. Inspiration and expiration are the fundamental
mechanisms that cannot cease to ensure the survival of an organism through the exchange
of O2 and CO2. All other ventilation modalities, such as vocalization, coughing or sneezing,
are performed within the framework of a respiratory cycle. Regardless of the purpose
for mobilizing the respiratory system, the process is coordinated by the nervous system,
which synchronizes the contraction and relaxation of various muscles. Plethysmography
signals capture the airflow that results from coordinated movement produced by different
muscles, and thus analyzing respiratory cycles and their evolution from these signals can
provide insights into both the underlying cause for activating the respiratory system and
how the muscles are mobilized and controlled by the nervous system.

A global and local scale problem. Assuming an algorithm to segment a plethys-
mography signal respiratory cycles, the analysis of ventilation can be broken down into
two tasks: embedding respiratory cycles and studying the dynamic of the embedded
sequences. From a time series perspective, the embedding process must simplify the
complexity of the time series while preserving its physiological relevance, facilitating the
evaluation and interpretation of ventilation dynamics. While dynamic analysis focuses
on local events, embedding can be considered a global scale task that can be dealt with
statistical algorithms. Figure 4.3 illustrates the divisions of the ventilation analysis in
two tasks. The following two chapters primarily focus on embedding respiratory cycles,
and we also present basic tools for analyzing the dynamics of the embedded sequences.
The development of more statistically robust methods for dynamic analysis is left for
future work.

Limitations of current ventilation quantifiers. Current methods for describing
ventilation typically rely on aggregating descriptors of respiratory cycles over time.
Indeed, from airflow signals, common descriptors of the respiratory cycle include the
inspiration/expiration duration or the air volume inhaled/exhaled. These descriptors
are derived from detecting remarkable points like inspiration starts or ends. However,
current detection algorithms are sensitive to noise and breathing alterations, making point
detection unreliable in extreme cases. More importantly, they only reveal part of the
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Figure 4.3 General workflow for mice ventilation analysis

information contained in respiratory airflows, leading to a poor description of respiratory
cycles. Finally, these descriptors are usually average through time, leading to features like
respiratory frequency of average volume inhaled/exhaled to describe ventilation. While
essential to quantify respiratory exchange, these features result in smooth representations
of airflow signals that cannot represent the heterogeneous and fast-changing ventilation
dynamic.

A sensitive respiratory cycle segmentation algorithm. EMKA offers high per-
formance plethysmography systems. The biologists using this equipment analyze the
recorded data with the IOX2 software [Mai+18]. It benefits from a user-friendly interface
and offers numerous tools to interact and explore plethysmography signals. Notably,
the software enables the computation of various respiratory cycle descriptors, including
those previously mentioned. These descriptors’ computation relies on an algorithm that
segments the respiratory cycles from an airflow signal. While effective under many condi-
tions, this algorithm shows limitations when mice present severe respiratory alterations.
Indeed, the inspiration and expiration starts are inferred using tangential information
and a notable value in the airflow: the inspiratory flow peak. However, the position of
the peak may vary depending on the presence of pauses in the cycle, or even disappear in
case of bronchoconstriction while the cycle limits may remain unchanged. As detailed in
the next section, in the experimental application, mice are exposed to toxic molecules and
exhibit significant respiratory cycle disruptions, highlighting the need for a more robust
segmentation algorithm.

Improving ventilation description. The repertoire of ventilation modalities is varied,
and it notably includes respiratory reflexes whose role is to protect the respiratory system,
i.e., the lungs and the airways, from potentially harmful substances. Reflexes are selected
to either expel irritant molecules from the respiratory system or block their entry. These
reflexes are generally automatic and beyond conscious control. For instance, swallowing is
a reflex that closes the upper airways to prevent food from entering the airways. Exposure
to irritant molecules can also trigger reflexes such as sneezing and coughing, which help
clear irritants, or bronchoconstriction and apnea, which prevent further inhalation of
harmful substances.
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Respiratory reflexes have been well studied; some are even visible in plethysmography
signals. Proposing embedding of respiratory cycles that reflect characteristic events like
reflexes would be meaningful in describing ventilation. Unfortunately, common respiratory
cycle descriptors fail to account for some reflexes. For instance, some provoke pauses
during a respiratory cycle, and their physiological meaning differs depending on the
pause location. Indeed, a pause before inspiration suggests that a mouse has difficulties
activating ventilatory muscles, while a pause after inspiration suggests difficulties relaxing
the ventilatory muscles. As depicted in Figure 4.4, both reflexes cannot be differentiated
solely by duration and volume. The differentiation is made possible by including additional
descriptors that somehow encode the shape difference between reflexes.
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Figure 4.4 Illustrations of two mice ventilation modalities carrying different physiological
meanings. (a) A pause appears in the respiration after inspiration, meaning that the mouse has
difficulties relaxing ventilatory muscles. (b) A pause appears in the respiration after expiration,
meaning that the mouse has difficulties activating ventilatory muscles. However, simple descriptors
like cycle duration or volume inhaled/exhaled cannot differentiate the two modalities.

Toward shape-based unsupervised methods. In a simple case, constructing an
embedding that pairs respiratory cycles to characteristic ventilation modalities like reflexes
could be framed as a classification problem. However, there are more suitable approaches,
as classification requires the creation of a labeled dataset, which would be both time-
consuming (approximately 12,000 respiratory cycles to annotate for an hour of recording)
and require a good understanding of the data. However, as illustrated earlier, the shape
of respiratory cycles offers valuable insights into the underlying ventilation modality.
Shape-based unsupervised methods are a more appealing alternative approach for creating
embedding directly from a respiratory cycle dataset, provided the notion of shape is
encoded correctly. However, unsupervised algorithms are governed by geometrical or
statistical principles and are often disconnected from the applicative context. Ensuring
an ongoing dialogue between the data and the biological context is crucial for establishing
meaningful correspondences.

For example, a recent clustering method attempted to classify respiratory cycle
patterns from airflows recorded in a WBP [SF21]. They used principal component
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analysis and a hierarchical clustering algorithm to identify groups of common respiratory
cycle patterns. The groups reveal shape variations that are not distinguishable from
standard features like respiratory frequency or inhaled/exhaled volume. While these
groups held physiological significance, enabling the tracking of critical changes over time,
they could not be directly linked to specific respiratory activities because WBP signals
combine multiple parameters (volume, temperature, and humidity).

Scope of the next chapters. The next chapter introduces an embedding technique based
on a time series clustering algorithm. This fast method comes with several visualizations
that provide insights about common ventilation modalities and a general understanding of
the experiment. The subsequent chapter presents an embedding technique that leverages
shape analysis algorithms. This method maps respiratory cycles to vectors that encode
shape information, enabling the application of statistical methods to study ventilation
dynamics. However, both embedding techniques depend on a reliable segmentation of
respiratory cycles, which is discussed in the following section.

4.1.3 Segmenting respiratory cycles

A plethysmograph records the breathing airflows from air volume changes within an
airtight chamber. We take the convention that the breathing airflows are positive during
inspiration and negative during expiration.

Current approaches. Intuitively, inspiration and expiration starts correspond to zeros
of a breathing airflow signal. Current segmentation algorithms take this convention.
However, the signal may suffer from noise or respiratory alterations that blur inspiration
and expiration starts. To overcome this issue, two heuristics are commonly used to
estimate starts. The first one defines an inspiration (resp. expiration) start as the last
(resp. first) zeros before (resp. after) the airflow reaches a user-defined threshold [SF21].
The second heuristic, used by emka [Mai+18], defines inspiration and expiration starts as
the zeros-crossing values of tangents computed between some critical points (essentially
percentages of the maximum flow during inspiration).

Both heuristics are sensitive to outliers, often present when severe alterations occur,
and may fail in some situations, like when the inspirations or expirations happen in
several steps. Figure 4.6(a,b) illustrate heuristics sensitivity on a real plethysmography
signal with severe breathing alterations. Both heuristics fail to correctly estimate several
inspiration starts because of noise and apnea during inspirations.

An approach based on physiological constraints. Previous heuristics show that
setting inspiration and expiration starts from a breathing airflow is difficult and approxi-
mate. However, a natural and robust definition of inspiration and expiration starts is
possible by considering the lungs’ inflating state obtained by robust integration of the
breathing airflow S ∈ Rn:

vt =
t∑

i=1

si − ât+ b̂, ∀t ∈ [[1, n]] (4.1)
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where t ∈ [0, n] 7→ ât+ b̂ ∈ R, is the linear approximation of S. Indeed, a linear trend often
appears during the integration process, and it is sensibly due to volume, temperature,
or humidity changes inside the chamber caused by breathing. During inspiration, the
lungs inflate and reach a maximum relative volume at the end of the inspiration by
physical constraints. Conversely, the lungs have a minimal relative volume at the end
of an expiration. Therefore, inspiration starts can be identified as the local minima of
the lungs’ volume signal, and expiration starts at its local maxima. From an algorithmic
perspective, to ensure an alternation between inspiration and expiration, the segmentation
algorithm first searches for all local minima with a peak-searching procedure based on
prominence and then searches for the maximum between two consecutive local minima.

Specifically, the peak detection algorithm consists in finding all local maxima and
removing those whose prominence is below a prominence threshold. Considering a time
series x ∈ Rn, a data point xt is considered as a local maximum if xt > xt−1 and
xt > xt+1. Given a user-defined window length wlen, the prominence of a local maximum
xu is computed as follows:

1. Finding left prominence: Denote su the last time point such as the sequence
(xlu , ..., xu−1), where lu = max(0, u−⌊wlen/2⌋), intersects the horizontal line y = xu.
If there is no intersection, su = lu. Left prominence is defined as: plu = xu −
min(xsu , ..., xu−1).

2. Finding right prominence: Denote eu the first time point such as the sequence
(xu+1, ..., xru), where ru = min(T, u + ⌊wlen/2⌋), intersects the horizontal line
y = xu. If there is no intersection, eu = ru. Right prominence is defined as:
pru = xu −min(xu+1, ..., xeu).

3. Set prominence: Prominence of the local maximum xu is defined as pu =
max(plu, pru)

Figure 4.5 illustrates the prominence computation. Considering a minimum prominence
pmin, only local maxima with a prominence greater than pmin are considered as peaks.
This method is implemented in Python Scipy package1.

Algorithm 10 Computing inspiration & expiration starts
Require: S a time series, wlen peak search window length , pmin minimum prominence
1: V ← ComputeV olume(S) ▷ See Equation (4.1)
2: insp_start← SeachPeak(−V,wlen, pmin)
3: K ← length(insp_starts)
4: exp_start← ()
5: for k=1,. . . ,K-1 do
6: s← insp_start[k], e← insp_start[k + 1]
7: exp_start.append(argmax(S[s : e]) + s)
8: return insp_start, exp_start

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
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Figure 4.5 The prominence is leftu. There is no intersection between the horizontal line and
the curve on the right side, the right search space is bounded by the user defined window size.

Algorithm 10 describes the procedure for detecting inspiration and expiration starts.
Once detected, the plethysmography signal can be segmented into a dataset of respiratory
cycles or a pair of datasets, one for inspiration and one for expiration. Figure 4.6c
illustrates the segmentation on a real plethysmography signal with severe breathing
alterations. Compared to other heuristics, all inspiration and expiration starts are well
estimated. Note that the procedure has been primarily developed to segment signals
recorded with DCP, specifically for mice’s nasal airflow as their breathing is mainly nasal.
However, the algorithm field of application can be extended to other plethysmographs.

4.2 The experimental application

4.2.1 The biological context

Acetylcholine, a neurotransmitter controlling ventilation and much more.
Acetylcholine (ACh) neurotransmitter is a key mediator for the conscious or unconscious
regulation of breathing. This chemical compound allows signal transmission across
cholinergic neurons or other cell types. It is present in several organs and tissues, and
it mediates the regulation of numerous physiological mechanisms, including ventilation.
For instance, it is present in the central nervous system (CNS), specifically in the brain,
where it plays an important role in memorizing and learning [DB07]. It is also present in
the peripheral nervous system (PNS), notably in neuromuscular junctions (NMJ), where
it permits the transmission of signals from a neuron to a muscle fiber, causing muscle
contraction [Sla15]. More specifically, in the somatic nervous systems ACh is involved
in conscious contractions of skeletal muscles and in the autonomic nervous system, it
mediates several vegetative functions like digestion, pupil dilatation, heart rate regulation,
or breathing [MLA23]. Figure 4.7 describes the nervous system taxonomy.

A fast and powerful transmission process. The signal transmission between two
neurons or a neuron and another cell type occurs at a synapse, a functional contact zone
between two cells. To pass a signal between cholinergic cells, the transmitter neuron
releases ACh in the synaptic cleft, which rapidly binds and unbinds with receptors located
at the surface (membrane) of the target cell (neuron or muscular fiber). To terminate the
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Figure 4.6 Heuristics for segmenting respiratory cycles tested on a real nasal airflow signal
with severe breathing alterations. Correctly estimated inspirations and expirations starts are
represented by dots in green and red, respectively. Poorly estimated starts are represented by
orange crosses. (a) The threshold-based heuristic misses two inspiration starts, as the signal
crosses the zero line during inspiration. (b) The tangent-based heuristic misses all inspiration
starts as the lines passing by points at 5% and 10% of the maximum inspiration flow disregard
the apnea occurring during inspiration. (c) The volume-based heuristic correctly estimates all
starts thanks to the robustness to noise of the volume signal and the peak search algorithm.
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Figure 4.7 Mouse nervous system taxonomy
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Figure 4.8 Cholinergic signal transmission at a neuromuscular junction. To transform a
cholinergic signal in a muscle contraction, the transmitter neuron releases ACh in the synaptic
cleft, which rapidly binds and unbinds with receptors located at the surface of the muscle fiber.
To terminate the signal transmission, AChE destroys ACh by hydrolysis.

signal transmission, the Acetylcholinesterase (AChE) enzyme destroys ACh by hydrolysis.
AChE is also located in the synaptic cleft, and its time to hydrolyze ACh is extremely
short, no more than a few milliseconds. In particular, AChE concentration is high in
NMJs [Ber+11], since ACh is abundantly released in NMJs when passing a signal to
ensure rapid muscle responses. Figure 4.8 illustrates the cholinergic transmission process
at a neuromuscular junction.

Receptors are complex chemical structures. Membraneous receptors receive and
transduce a signal carried by chemical messengers into the target cell. While receptors are
dedicated to chemical messengers, it is difficult for a cell to implant receptors at specific
locations on its membrane due to the structural complexity of receptors. Consequently,
cells are extremely sensitive to the relative position between their receptors and chemical
messenger sources. One strategy organisms employ to specialize receptors and avoid
unwanted activations consists of combining receptors with enzymes able to destroy
chemical messengers before they reach the receptors.

AChE, an enzyme with multiple roles. The role of AChE is not limited to ending
a signal transmission, but it also intervenes in the receptor’s specialization in different
ways. Two roles are commonly recognized for the AChE [MLA23]:
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• Ending signal transmissions: At a synapse level, AChE ends the signal trans-
mission by hydrolyzing ACh after the receptor activation.

• Avoiding ACh spillover: At a NMJ and in synapses of the CNS, AChE prevents
ACh from spreading out of the synaptic cleft to block the activation of receptors
located on the muscle fiber or other membrane neurons and in the neighborhood of
the synapse. These receptors can trigger unwanted mechanisms, and AChE prevents
this by hydrolyzing all ACh before it can leave the synapse.

Closely related to AChE, another enzyme capable of hydrolyzing ACh exists, the Bu-
tyrylcholinesterase (BChE) [Loc15]. This enzyme is present in the liver and the plasma
(blood) and is often described as a backup for AChE. Recently, it has been suggested that
AChE and BChE play preventive roles [PPK21]:

• A local shield against ACh activation: In some localized areas, cells should
not be activated by ACh. However, they present ACh receptors on their membrane,
and in order to their activation, these receptors can be abundantly surrounded by
AChE or BChE enzymes.

• Preventing ACh from spreading throughout the body: In the body, many
cells produce ACh, while many others are sensitive to ACh. To prevent certain
mechanisms from being triggered involuntarily by the diffusion of ACh in the plasma,
AChE or BChE enzymes are also diffusely present in the plasma to drain it of ACh.

The centrality pitfall. Hypothetically, if AChE and BChE are inhibited, ACh is no
longer hydrolyzed, and it remains present in large quantities around the emitter cells
but also diffuses into the body. Consequently, signal transmissions cannot be terminated,
and many cells find themselves involuntarily activated, erratically triggering unwanted
physiological mechanisms. Given the wide range of physiological processes involving ACh,
the consequences of AChE and BChE inhibition are numerous and of varying severity.

Organophosphorus compounds: lethal ChE inhibitors. Examples of ChE (AChE
& BChE) inhibitors are the organophosphorus compounds (OPCs). They are irreversible
inhibitors, meaning they permanently prevent ChE from hydrolyzing ACh. Because of
their notable toxicity, these inhibitors are widely used as pesticides, Parathion/Malathion
(banned worldwide but still used), or as weapons of mass destruction, nerve agents
(Novichok, Sarin, and so on). An exposure, even to low doses over a short period,
may trigger characteristic reactions like: miosis, dim and blurred vision, headaches,
bronchoconstriction, hypersecretion in airways, nausea with vomiting and diarrhea, muscle
contractions leading to paralysis, deterioration of mental state, loss of consciousness,
convulsions, and apneas, which can lead to death [Ner18]. A 2020 study states that
approximately 740,000 unintentional expositions to OPC pesticides, including 7,446
deaths, were reported from 141 countries in the course of one year. However, due to
inadequate reporting, they have estimated that the number of expositions worldwide
should be around 385 millions, including 11,000 deaths [Boe+20].
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Most deaths caused by OPCs poisoning are due to respiratory failure (respiratory
muscle paralysis, bronchospasm, bronchorrhea, central apnea) and pulmonary dysfunction
[Can06; TR87]. Understanding the influence of OPCs on breathing becomes essential to
protect vital functions more adequately after exposure to OPCs. However, such analysis
must be carried out with a methodology capable of dissecting the complex role played by
AChE/BChE and the consequences of their inhibition.

Inferring OPCs influences on mice with genetics. From a treatment perspective,
the research currently focuses on improving the accessibility of a medicine, the oxime
(Organophosphate-inhibited AChE reactivator), to the CNS for reactivating AChE en-
zymes that have been inhibited after an exposition to OPCs. Meanwhile, it has been
shown that mice without AChE survive. This is because BChE in the brain and peripheral
tissues hydrolyzes ACh. However, BChE inhibitors that do not penetrate the brain have
a respiratory arrest within minutes [Cha+03], stressing the need to understand better the
consequences of OPC exposition for designing suitable treatments.

To establish this argument, researchers have genetically selected mice without AChE
enzymes in the whole body. These mice present severe phenotypic alterations but survive
thanks to ACh hydrolysis by BChE, playing a backup role for AChE. Researchers have
shown that the BChE does not play a role in the regulation of breathing in the CNS.
Hypothetically, an OPC exposition should have a minor effect on these mice due to the
AChE scarcity. However, the mice still suffer from severe breathing alterations when
exposed, indicating that protecting CNS functions from OPC exposition is insufficient for
survival [Cha+03; Duy+01].

Plethysmography and genetic. Leveraging genetics to reduce problems’ complexity is
a well-established approach in biology, made possible by significant advances in genomics.
In the specific context of studying the effects of exposures to OPCs, the success of this
approach also depends on the ability to accurately quantify respiratory changes and assess
the distress state of mice from plethysmography signals. This need forms the basis for
the work presented in the following two chapters.

Experiment positioning. Recent studies have demonstrated that the inhibition of
AChE/BChE in the CNS or PNS alone does not fully explain the breathing alterations
observed after exposures to OPCs [Cha+03; Min+02]. The fact that ACh is also used
by cells to communicate outside the nervous system may explain this observation. In
line with this, it has recently been shown that small amounts of ACh are synthesized by
non-neuronal cells, such as solitary chemosensory cells (SCC) in the respiratory tract.
Specifically, when SCC detects a specific irritant molecule, the cell releases ACh. On the
one hand, ACh activates neighboring cells, potentially triggering mucociliary clearance, a
protective reflex that traps irritants in mucus, which is then evacuated by micro-vibrations
and reflexes when the mucus is too abundant. On the other hand, ACh may directly
activate a sensory neuron that triggers a respiratory reflex [Kra+11].
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These observations laid the foundation for the experiment conducted by Aurélie Nervo
[Ner+19] and discussed in the next section. The hypothesis to be tested in the experiment
was formulated as follows:

"Severe alterations in breathing after ChE inhibition are due to an excess of ACh
which, in addition to modifying cholinergic synaptic transmission in the CNS and PNS,
escapes from cholinergic synapses, mainly those at NMJs, to reach non-synaptic cholinergic
receptors in sensory nerve afferent pathways, possibly regulated in normal circumstances
by non-neuronal ACh.", from [Ner18]

In essence, the experiment aimed to determine whether the diffusion of ACh throughout the
body, following ChE inhibition, leads to abnormal activation of cells typically stimulated
by non-neuronal ACh, potentially explaining the observed breathing alterations.

4.2.2 The experiment

Control period Exposed periodInhibitor injection

Physostigime15 to 20 minutes 35 to 40 minutes

Figure 4.9 Experimental protocol: a mouse of a given genotype is placed in DCP for 15 to 20
minutes before injecting physostigmine, a ChE inhibitor. Afterward, the mouse’s breathing is
recorded for 35 to 40 minutes.

In the following chapters, we applied our methodologies to a subset of the data from
the experiment [Ner+19], and we solely discussed experimental information to this subset.
Interested readers can refer to [Ner+19] for a full description and a discussion of the
experiment. Note that all experiments were carried out in compliance with the European
Committees Council Directive (86/609/EEC) and were approved by Paris Descartes
University ethics committee for animal experimentation (CEEA34.EK/AGC/LB.111.12).

The experimental protocol. According to the genetic approach, mice of different
genotypes were exposed to a ChE inhibitor, and their breathing was monitored with a
double chamber plethysmograph (DCP). Each genotype differently expresses the presence
or absence of AChE/BChE at different sites, and the recording procedure was as follows:

1. Phase 1: The mouse is placed in a DCP for 15 or 20 minutes to serve as an internal
control.

2. Phase 2: The mouse is removed from the DCP and injected with a ChE inhibitor.

3. Phase 3: The mouse is placed back into the DCP, and its breathing is recorded for
35 or 40 minutes.
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For all mice, the nasal and thoracic airflows were recorded at 2,000Hz. By default, the
double chamber plethysmograph includes a bandpass filter, whose band limits are 0.250Hz
and 35000Hz, which has not been modified. Figure 4.9 illustrates the experimental
protocol.

The ChE inhibitor. Mice were injected with physostigmine, a carbamate compound
that is readily distributed throughout the body, including the CNS. Physostigmine is a
reversible inhibitor with a high affinity for AChE/BChE, that ChE enzymes are inhibited
throughout the monitoring process.

Mice. We considered 4 different genotypes and kept signals of 8 mice per genotype. The
different genotypes were:

• WT (Wild Type): Mice have all forms of AChE and BChE. As well, their cholinergic
system is normal and functional. It is the control group.

• PRiMA KO: Mice have an AChE deficiency in cholinergic neurons of the brain and
peripheral nervous systems (autonomic and enteric) [Dob+09].

• ColQ KO: Mice have AChE deficiency in neuromuscular junctions (NMJs) [Fen+99].

• AChE1iRR: Mice have no AChE in skeletal muscle [Cam+08].

Method-related preprocessing. In the next chapters, signals may be preprocessed
differently depending on the proposed embedding method. Details of the preprocessing
steps will be provided in the respective chapters.





Chapter 5

Symbolic embedding

Key points:

1. This chapter presents a foundational approach for shape-based analysis of
plethysmography signals from mice exposed to a drug affecting respiration.
The goal is to create a symbolic embedding of respiratory cycles, where
each symbol captures physiological information not easily discernible through
traditional ventilation descriptors.

Contributions:

1. This chapter introduces a baseline method that compares respiratory cycles
using a DTW-based clustering algorithm, resulting in a shape-based symbolic
representation where each symbol represents a cluster. Tracking these symbols
over time results in a symbolic representation of plethysmography signals.

2. This approach facilitates the discovery of various ventilation modalities that
are not captured by conventional descriptors. Notably, the symbolic repre-
sentation helps identify genotype-specific adaptations to enzyme deficiency
and reveals diverse responses to drug exposure.

Associated papers:

• Thibaut Germain et al. “Unsupervised classification of plethysmography
signals with advanced visual representations”. In: Frontiers in Physiology 14
(2023), p. 781

• Thibaut Germain et al. “Unsupervised study of plethysmography signals
through DTW clustering”. In: 2022 44th Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE. 2022,
pp. 3396–3400
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5.1 A symbolic framework for mice ventilation analysis.

As discussed in the previous chapter, mouse ventilation modalities can be inferred through
visual interpretation of the shape of respiratory cycles. By applying Algorithm 10 to
segment plethysmography signals into a dataset of respiratory cycles, a shape-based
clustering approach emerges as a natural solution for grouping these cycles according to
ventilation modalities, leading to a symbolic representation with physiological significance.
The embedding method we propose combines K-means clustering with Dynamic Time
Warping (DTW) distance to preserve visual interpretability. This method serves as a
baseline for the analysis of mice ventilation.

Shape modeling. The proposed approach applies a Kmeans clustering on a dataset of
respiratory cycles extracted from mice cohorts. To prevent the algorithm from learning
meaningless decision boundaries between clusters, the distance functions should be
invariant to irrelevant sources of inter-individual variabilities while preserving the shape
characteristics relevant to mice ventilation analysis. Essentially, the chosen distance is
invariant to amplitude scaling and offset shifts, thus mitigating deformations induced
by mouse size and recording distortions. Also, deformations caused by time warping
are mitigated in a limited manner to minimize breathing frequency variabilities while
remaining sensitive to apneas, an important modality when studying ventilation. Although
a formal mathematical definition of an invariant distance function based on group action
is not possible due to the lack of a group structure for the deformations set, the following
section details the implementation of the distance function and outlines the complete
methodology.
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5.2 Method

5.2.1 Overview of the method

The method is composed of three main steps:

(a) Extracting inspiration and expiration sequences.

(b) Computing reference sequences with a DTW-based clustering algorithm.

(c) Performing the symbolic embedding of recordings with the extracted reference
sequences.

Inspiration Classifier

Expiration Classifier

Inspiration/expiration 
extraction

A,A,A,B

1,1,2,1

A1,A1,A2,B1

Clustering

Groups

Reference  
SequencesInspiration set

Expiration set

Fl
ow
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lu
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Inspiration start Expiration start

A B
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r(1)

r(2)

r(3)

C(2)(a) (b)
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Figure 5.1 (a): Step 1, Extracting inspirations and expirations. (b): Step 2, Computation of
the reference sequences, C(i) denotes the clusters associated to the reference sequence r(i). (c):
Step 3, Symbolic embedding of a recordings.

Step 1: Detection of the respiratory cycles and extraction of the inspi-
ration/expiration sequences. Following the procedure detailed in Section 4.1.3,
respiratory cycles are extracted from an airflow signal and decomposed to form a set of
inspirations {s(1)in , . . . , s

(Ns)
in } and a set of expiration sequences {s(1)out, . . . , s

(Ns)
out }, where Ns

is the total number of segmented cycles. Figure 5.1a illustrates the process for creating
the inspiration and expiration sets.

Step 2: Computation of the reference sequences. In the second step, a small
number of reference sequences from the inspiration and expiration sets are computed.
The reference sequences represent groups of inspiration/expiration sequences with similar
shapes and are potentially linked to one or several inspiration/expiration modalities. To
that aim, a clustering algorithm Kmeans is combined with the Dynamic Time Warping
(DTW) distance measure, which computes the similarities between sequences of potentially
different lengths. The output of this step is a set of inspiration reference sequences
{r(1)in , r

(2)
in , . . . } and a set of expiration reference sequences {r(1)out, r

(2)
out, . . . }. Figure 5.1b

illustrates the computation process of reference sequences in the case of inspiration.
Step 3: Symbolic embedding of recordings. The objective is to automatically

characterize a recording s′ with the reference sequences learned during Step 2. To that
end, the signal is first segmented through the procedure described in Step 1. Then, each
of the N ′ inspiration/expiration sequences present in s′ is assigned a symbol representing
the closest reference sequence considering the DTW. This procedure results in a symbolic
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representation of s′, where each respiratory cycle is replaced by a symbol composed of a
letter (which specifies the type of inspiration) and a number (which specifies the type of
expiration). Figure 5.1c illustrates the symbolic embedding of a recording.

5.2.2 Computation of the reference sequences

Provided a set of inspiration/expiration sequences, we now aim to compute K reference
sequences representing typical inspiration or expiration patterns potentially linked to
ventilation modalities. In the following sections, X = {x(1), . . . ,x(N)} represents a set of
sequences (either inspiration or expiration) of potentially different lengths.

The clustering algorithm. The K reference sequences are learned from the set X with
the Kmeans algorithm [KR09]. This algorithm partitions X in K groups (or clusters)
{C(1), . . . ,C(K)} of sequences with similar patterns. Roughly, Kmeans is a two-step
iterative refinement technique that assigns each sequence to the closest current centroid
and then updates each centroid with regard to the new assignments. A centroid is a
reference sequence r(i) which corresponds to the average sequence of the cluster C(i). In
our case, the Kmeans algorithm relies on a DTW distance to assign sequences to clusters,
the DTW, and a DTW-based averaging algorithm to compute the reference sequences.
Algorithm 11 describes the clustering, and its key components are described in the next
paragraphs. Note that during the preprocessing step, all sequences are first centered to
zero mean and scaled to unit variance using the z-normalization. It enforces invariance to
amplitude scaling and offset shift, which has been experimentally shown to be necessary
for learning relevant clusters. Also, the clustering algorithm stops after 10 iterations for
all experiments.

Algorithm 11 DTW-Kmeans
Require: X a set of sequences, K the number clusters, maxiter maximum iterations
1: X← z-normalization(X) ▷ removing amplitue scaling and offset shift
2: C ← Kmeans++(X ,K) ▷ clusters’ centroid intilization [AV07]
3: niter ← 0
4: while niter < maxiter do
5: A← DTW-assignement(C,X)
6: C← update-centroid(C, A,X) ▷ BS-DBA procedure, see Algorithm 12
7: iter = iter + 1
8: A← DTW-assignement(C,X)
9: return C, A

Dynamic Time Warping distance. At each iteration, the Kmeans algorithm assigns
each sequence to the nearest centroid according to the DTW distance [BC94]. In its
original form, the DTW has been created to compare discrete time series of potentially
different lengths independently to their time parametrization. Formally, the DTW distance
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between x ∈ Rm and y ∈ Rn is defined by:

DTW (x,y) = min
A∈Am,n

⟨A,∆⟩F , where: ∆ij = ∥xi − yj∥2 (5.1)

where AM,N ⊂ {0, 1}M×N is the set of path matrices that connect the top-left corner (1, 1)
to the bottom-right corner (m,n) solely with moves: →,↘, ↓ [CB17]. The distance can
be computed with dynamic programming with a time and space complexity of O(mn).

DTW is commonly used in times-series data-mining [EA12a; Fu11] where it has
notably shown great success in classifying and clustering short time series [Wan+13].

In its original form, the DTW measure is sensitive to noise and outliers, potentially
leading to pathological and unrealistic time parametrization. In addition, some ventilation
modalities, like those including apneas, depend on the time warping, stressing the need to
control the elasticity of the DTW. To overcome these issues, we constrain the DTW with
the Sakoe-Chiba constraint, which imposes that the dilations are smaller than a given
duration [SC78]. Formally, given a threshold α > 0, this constraints the set of warping
matrices to the set: Aα

m,n = {A | A ∈ Am,n, with Aij = 0 when |i− j| > α}.

Time-series averaging. Updating clusters’ centroid is an important subroutine of
Kmeans algorithm. Indeed, the quality of each cluster is highly dependent on the quality
of its centroid [ASW15]. At each iteration, all sequences in the data set X are assigned to
their closest centroids {r(1), . . . , r(K)}. Then, each centroid is updated by computing the
average sequence based on the new assignment.

For any set of sequences X′ = (x′(1), . . . ,x′(M)) ⊂ X, the average sequence, with
respect to the constrained DTWα, is a minimizer of the cost function:

FX′ : y ∈ Rl 7→
∑

x′∈X′

DTW2
α(y,x

′) ∈ R (5.2)

where L > 0 is the average duration of the sequences in X′ .
Accurately and efficiently solving Equation (5.2) is not trivial [NR07; Jai19]. Tradi-

tional averaging methods cannot deal with the non-linear mapping between sequences
of potentially different lengths, and several algorithms have been proposed to solve this
problem [PKG11; Mor+18]. A recent work [SJ18] uses the subdifferentiability property of
the optimization function to develop a stochastic subgradient descent algorithm (S-DBA).
Specifically, the subgradient of FX′ at a point y ∈ Rl is:

∇FX′(y) =
2

M

M∑

u=1

(
V (u)y −W (u)x′(u)

)

where W (u) ∈ Aα
ln is the optimal warping matrix between y ∈ Rl and x′(u) ∈ Rn and V (u)

is a diagonal matrix in Nl×l such that:

V
(u)
i,i =

n∑

j=1

W
(u)
ij
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We implemented a batch version of S-DBA called BS-DBA for a trade-off between accuracy
and speed. BS-DBA is presented in Algorithm 12. If the initialization sequence yini is
not given, it is set to a vector of size l sampled from an uniform distribution on [0, 1].
The learning rate scheduler η is taken from [SJ18]:

η(t) =

{
η(t−1) − (η0 − η1)/β if 1 ≤ t ≤ β

η1 otherwise

where η0 = η(0) = 0.05, η1 = 0.01, nb is the batch size and β = ⌊N/nb⌋+ 1 is the number
of iteration for one epoch. The learning rate only decreases during the first epoch then it
remains fix to η1. The algorithm stopping criteria is the total number of iterations.

Algorithm 12 BS-DBA

Require: X = (x(1), . . . ,x(N)) a set of time-series, yini (optional) the starting sequence,
nepochs the number of epochs, L the length of the averaging time-series, nb the
size of a batch, nit the number of iterations, η the learning rate scheduler.

1: if yini is given then
2: y(0) ← yini

3: else
4: Initialize y(0) ∈ RL

5: Initialize best solution y∗ ← y(0)

6: for epoch = 1, . . . , nepochs do
7: Batches← randomly partition X in batches of size nb

8: for batch ∈ batches do
9: for x(k) ∈ batch do

10: P (k) ← Optimal warping path between y(t−1) and x(k)

11: W (k) ←Warping Matrix of P (k)

12: V (k) ← Valence Matrix of P (k)

13: Update temporal solution:

y(t) ← y(t−1) − η(t)
2

nb

nb∑

k=1

(
V (k)y −W (k)x(k)

)

14: Update best solution such that: y∗ = argmin
(
FX(y

∗), FX(y
(t))
)

15: if t ≥ nit then
16: break
17: return y∗

5.2.3 Characterization and symbolization of recordings

From a recording s′, we first perform the segmentation process described in Section 4.1.3
to extract the inspiration/expiration sequences. Then, we use a 1-NN (nearest neighbor)
algorithm to assign each sequence to the reference sequence, which is the closest to it, in
the sense of the DTWα measure.
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To avoid incoherent symbols, some inspiration/expiration sequences are treated as
outliers if their distance to their reference sequence is higher than a threshold. The
threshold is different for each reference sequence. It corresponds to the η-quantile of the
distance distribution observed within the reference sequence cluster during the learning
step. By default, we choose the threshold value η = 0.95.

This procedure yields a symbolic representation of s′, where each respiratory cycle is
replaced by a symbol composed of a letter (which specifies the type of inspiration) and a
number (which specifies the type of expiration).

Connection with ventilation pattern descriptors. In the present work and for the
purpose of validation, we have used four descriptors:

• Inspiratory/Expiratory Time (Ti/Te, s): Duration of inspiration/expiration.

• Nasal Inspiratory/Expiratory Volume (NIV/NEV, ml): Volume of air in/out
during inspiration/expiration.

5.3 Experimental settings

A python implementation of the method is available on Github 1.

Dataset preprocessing. Our data set includes all 32 nasal airflows from the dataset
present in Section 4.2.2. All signals have been down-sampled to 250Hz. It includes 8
recordings for each genotype: WT, PRiMA, AChE1iRR, ColQ. All mice were exposed to
the same inhibitor: physostigmine.

On average, a mouse’s respiratory cycle lasts about 0.3 seconds. The original data
set contains approximately 350,000 cycles; therefore, updating reference sequences from
the entire data set would have been too time-consuming. Thus, we extracted 1800 cycles
for each recording that were evenly selected in time. This subsampling corresponded to
approximately 36 cycles per minute, resulting in a set of 57,600 cycles that were divided
into an inspiration training data set and an expiration training data set.

Experimental protocol. In order to test our approach, we have run and evaluated the
results of the following experiment:

1. Extraction of training data set for inspiration/expiration.

2. Computation of inspiration/expiration referent sequences.

3. Symbolization of all signals in the data set.

1https://github.com/thibaut-germain/DCP_Clustering

https://github.com/thibaut-germain/DCP_Clustering
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Hyperparameters. The main parameters are presented below. Parameters for respira-
tory cycle detection have been set based on physician knowledge of the typical respiratory
cycles. For the clustering algorithm, the number of clusters has been set arbitrarily and
the Sakoe Chiba radius authorizes small dilatation.

• Respiratory cycle detection (Step 1):

– Prominence : 0.03 ml

– Window length : 2 s

– Minimum inspiration/expiration duration : 0.05 s

– Maximum inspiration/expiration duration : 2 s

• Clustering algorithm (Step 2, identical settings for inspiration and expi-
ration):

– Number of clusters: 5

– Number of iterations for Kmeans: 10

– Sakoe Chiba radius: 0.01 s

– Reference sequence length: 0.2 s

• Symbolization (step 3):

– Quantile threshold: 0.95

5.4 Results
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Figure 5.2 Respiratory cycle map displays with nasal airflow (ml.s−1) on the left and nasal
volume (ml) on the right. Positive flow corresponds to inspiration and negative flow corresponds
to expiration.
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Categorization of the respiratory cycles. We first aim to categorize breathing cycles,
inspirations, and expirations. The limits of inspiration and expiration are unambiguously
defined from the volume obtained by integrating the flow [Vij+93]. We define a referent
cycle as the association between a referent inspiration and a referent expiration. Consider-
ing K1 referent inspirations and K2 referent expirations, there exist K1K2 referent cycles.
In order to compare them, we develop a map where each row corresponds to a referent
inspiration and each column to a referent expiration. Each referent cycle is represented
by an actual cycle selected as follows:

• Among the identically labeled cycles in the training database, we select the cycle
whose cumulative DTW distance (DTW distance to the referent inspiration + DTW
distance to the referent expiration) is the smallest.

• The respiratory cycle map can be displayed using either the nasal airflow or the nasal
volume. In any case, the inspiration/expiration phases are matched, accordingly, to
their attributed colors. For inspiration, the color scale goes from red to yellow; for
expiration, it goes from blue to green.

• Inspiration/expiration referent sequences are ordered in increasing order according
to the average duration observed in each group. Therefore, as the number/letter
increases, the average inspiration/expiration duration is longer. Visually, lighter
colors (yellow/green) correspond to longer duration.

In our experiment, we set the number of inspiration and expiration referent sequences
to 5, as presented in Figure 5.2. Short duration cycles (A0, A1, B0, B1) are characterized
by a nasal airflow of sinusoidal shape. All 25 of the resulting classes are used in the
following sections to visualize and compare the respiratory cycles of mice of different
strains before and after physostigmine injection.

Distribution of respiratory cycle categories. In order to study the importance of
each reference cycle for a given symbolic representation, we introduce a new visualization
of the histogram that takes the form of a heat map. The respiratory cycle map (RC
map) corresponds to a heat map where rows are inspiration symbols and columns are
expiration symbols as presented in Figure 5.3a. Thus, each cell corresponds to a referent
cycle, and its value is set to the percentage of time assigned to that specific referent
cycle. To ease the study of less frequent referent cycles, we use a thresholded version of
the respiratory RC map where all reference sequences that represent more than 20 % of
the total duration are assigned to the threshold value of 20 %. A RC map provides a
quick understanding of the dominant ventilation modality of a mouse. In addition, RC
maps can be aggregated over a population, allowing comparisons of a mouse’s ventilation
modality to the average one.

In Figure 5.3b, RC maps are grouped by genotype: WT, PRIMA, AChE1iRR, ColQ.
For each genotype, the two left columns gathered RC maps before injection, and the
two left columns gathered RC maps after injection. The bottom line corresponds to the
average RC maps observed per genotype before and after drug injection.
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Figure 5.3 (a) Respiratory Cycle map (RC map) built-up process. (b) Respiratory RC maps:
All RC maps are truncated at the threshold value of 20%. RC maps are grouped by genotype:
WT, PRIMA, AChE1iRR, ColQ. For each genotype, the two left columns and the two right
collumns gathered RC maps respectively before and after physostigmine injection. Numbers on
RC maps correspond to the mouse id. The bottom line corresponds to the average RC maps
observed per genotype before and after drug injection. (c) Average reference sequence polar plots:
Polar plots are grouped by genotype. Inspirations are on the top, and expirations are on the
bottom. The values on each angular axis correspond to the average percentage of time assigned
to the associated reference sequence. The blue polygon corresponds to the values observed before
injection, and the red polygon corresponds to the values observed after the injection.
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In addition, we have created two conjoint polar plots, one for inspiration and one for
expiration. Each angular axis corresponds to a referent sequence, and the value on each
axis is equal to the percentage of time assigned to that specific referent sequence. These
values are linked together to form a polygon. As for RC maps, the visualization can
be done at the individual level or aggregated over a group of mice. This representation
complements RC maps as it decorrelates inspiration from expiration, easing the study of
both mechanisms independently as presented in Figure 5.3c.
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Figure 5.4 Respiratory bar codes: Respiratory bar codes are gathered by genotype: (top,left):
WT, (bottom,left): PRIMA, (top,right): AChE1iRR, (bottom,right): ColQ. Numbers to the
left of bar codes correspond to the mouse id. For each genotype, the left section corresponds
to barcodes before drug injection and the right section to bar codes after injection. Grey areas
in bar codes like mouse PRIMA-2 correspond to unpredictable cycles. Some experiments were
shorter than others resulting in shorter bar codes.

Time line representation of respiratory cycle categories (bar codes). Previous
representations give an overview of the ventilation modality of a mouse or a population.
Nonetheless, they do not offer insights into the temporal evolution of a mouse’s venti-
lation modality when facing a stressor. This evolution can be read from the symbolic
representation with proper visualization.

To that aim, we construct a respiratory bar code for each mouse that includes the
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time information, as presented in Figure 5.4a. The respiratory bar code is composed
of two lines, the upper line represents the inspirations, and the lower line representing
the expirations. The central white area corresponds to the period of inhibitor injection,
and the light grey area corresponds to unpredictable cycles. Each line is composed of
rectangles whose color refers to the associated reference sequence and whose length is
proportional to the duration of the associated respiratory cycle.

Figure 5.4b presents respiratory bar codes of all mice in the data set. They are
gathered by genotype, and mouse identification numbers are on the left of the bar codes.
For each genotype, the left section corresponds to bar codes before injection and the right
section to bar codes after injection.
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Figure 5.5 Multiple testing scheme with a false discovery rate (FDR) correction of 5%, performing
a Mann-Whitney U test for each type of respiratory cycle. A cell is colored black if the unit null
hypothesis is rejected after FDR correction and includes the corrected p-value of the associated
unit test. (a) Statistical tests comparing the distribution of respiratory cycles of control (WT)
and AChE-deficient (PRIMA, AChE1iRR, ColQ) mice before drug injection. (b) Statistical tests
comparing the distribution of respiratory cycles before and after drug injection for each genotype.

Statistical analysis of respiratory cycle categories. RC maps provide visual
comprehension of the heterogeneity in ventilation modalities and changes due to the
presence of a stressor. In complement to the visual presentation, we provide a statistical
analysis that compares the ventilation modalities between genotypes and the breathing
responses to the presence of a stressor.

The first statistical test compares the respiratory cycle distribution of AChE-deficient
mice (PRIMA, AChE1iRR, ColQ) with that of control mice (WT). The null hypothesis
is that the cohort of AChE-deficient mice has the same respiratory cycle distribution
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as the cohort of control mice. The alternative hypothesis is different respiratory cycle
distributions.

The second statistical test compares the distribution of respiratory cycles for each
genotype before and after drug injection. For the cohort of a given genotype, the null
hypothesis is to have the same distribution of respiratory cycles before and after drug
injection. The alternative hypothesis is different respiratory cycle distributions.

In both cases, we implemented a multiple testing scheme with a false discovery rate
(FDR) correction of 5%, performing a Mann-Whitney U test for each type of respiratory
cycle. Application of this test gives a map where each cell represents a type of respiratory
cycle, with the row corresponding to the type of inspiration and the column to the type
of expiration. A cell is colored black if the unit null hypothesis is rejected after FDR
correction. In each cell, we also displayed the corrected p-value of the associated unit
test.

All tests are rejected, Figure 5.5a, and the number of unit tests rejected at 5% is for
WT vs. PRIMA: 21, WT vs. AChE1iRR: 4, WT vs. ColQ: 3. Similarly, all tests are
rejected, Figure 5.5b, and the number of unit tests rejected at 5% is for WT: 15, PRiMA:
3, AChE1iRR: 3, ColQ: 3.
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Figure 5.6 Examples of typical ventilation modalities. For each panel, the left column represents
the referent cycle, and the right column is an extract from a recording of up to 5 seconds where
the reference cycle is repeated continuously. Charts with a blue background are expressed in nasal
airflow, and charts with a yellow background are expressed in nasal volume. (a) Referent cycle
B0. (b) Referent cycle B4. Inspiration, expiration, and end-inspiratory pause (EIP) duration are
illustrated. (c) Referent cycle C0. (d) Referent cycle D0.
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Figure 5.7 Box plots of the respiratory cycle descriptors: inspiration/expiration time and
inspiration/expiration volume. Each box plot represents a referent sequence. A box represents
the first quartile (Q1), median, and third quartile (Q3). The lower whisker corresponds to the
minimum value observed, and the upper whisker is above the third quartile by 1.5 interquartile
range (IQR: Q3-Q1).

This chapter presents a new method to compare and quantify cyclic signals that may
be particularly appropriate for biological investigations, such as respiratory signals. Rather
than comparing cycles based on the ventilation descriptors, cycles’ shapes are compared
to shape representations of most typical cycles. We will discuss the contributions and
limitations of this new strategy by analyzing a part of recordings previously published
[Ner+19].

5.5.1 Inspiration and expiration classes fit respiratory physiological control

The classes learned with the new approach represent various respiratory profiles that
carry biological meaning. We illustrate some respiratory profiles through their classes in
Figure 5.6. The last 15 minutes before physostigmine injection represents mice’s baseline
ventilation modalities. The control mice (WT) breathe with cycles of type A0 and B0.
Figure 5.6a shows 5 consecutive seconds of a raw signal with respiratory cycles of B0.
After injection of physostigmine, the inspiration classes (A and B) are not changed for the
control mice (WT), as shown with the polar plot (Figure 5.3c). However, the expiration
class changes from type 0 to type 2,3,4. Raw signals of 5 consecutive seconds of classes
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B4 are presented in Figure 5.6b. The profile of these classes shows a long pause when the
lungs are inflated. They correspond to post-inspiratory pauses. They were analyzed in
[Ner+19], and the authors quantified the duration of these pauses. The new approach
captures significant ventilation modalities making previous results apparent with the new
representation: for control mice (WT), post-inspiratory pauses appear after inhibitor
injection.

The approach also presents details about the inspiration dynamic of ColQ mice.
Indeed, the cycles of ColQ mice before injection are grouped into types C0 and D0, which
we present in Figure 5.6cd. Inspiratory classes C and D are characterized by a nasal airflow
that enters in two phases. The two phases in class D are distinctive. Compared to D, the
separation between phases is less visible in C. The ColQ mouse is a model of congenital
myasthenic syndrome with AChE deficit at the neuromuscular junctions. This mouse
shows an impairment of motor control, which could be reflected during the motor control
required for a smooth inspiration.

Bar codes (Figure 5.3b) also validate inspiration and expiration classes. A bar code
represents the symbolization of a raw signal as a timeline where inspirations and expirations
are colored accordingly to their classes. Bar codes reveal the dynamics of ventilation
modalities and their changes. For example, inspiration classes for control mice (WT)
after physostigmine injection are almost unchanged. On the contrary, their expiration
classes change significantly after a latent period. This dynamic is consistent with results
in [Ner+19] where the mean frequency per minute of respiratory cycle decreases after the
injection of physostigmine for control mice (WT). The frequency decrease corresponds to
an increase in the duration of the post-inspiration pauses per min. Through the bar codes,
it is possible to visualize the appearance of expiration classes 3 and 4 after injection with
remarkable precision.

The inspiration and expiration classes have been constructed without prior knowledge
of mice’s ventilation modalities. Nonetheless, the classes present differences that can be
interpreted in terms of physiological modifications. For instance, some of the expiration
classes represent post-inspiratory pauses. New inspiration classes have also been described,
probably related to the motor controls dynamics during the active ventilation phase.

5.5.2 Classes reveal heterogeneity: an observation masked by classical venti-
lation descriptors

Analyses on a small cohort can be biased if individual responses are heterogeneous.
Unfortunately, it is often difficult to recognize this heterogeneity through some descriptors.
The new symbolization, based on typical inspiration/expiration, the visualization and
the quantification tools we proposed, offer perspectives on this critical issue in biology.
For example, it is apparent on individual RC maps and bar codes that control mice
(WT) present homogeneous respiration; the respiration cycle types are A0 and B0. After
injection of AChE inhibitor, the RC maps and bar codes of control mice WT-1,2,6,7 show
that they follow the same evolutionary dynamics. Nevertheless, mice WT-3,8 present
different dynamics, and mice WT-4,5 died during the experiment. Thus, we can conclude
that mice adapt differently to cholinesterase inhibition by physostigmine. In addition,
the tests highlight changes that are significantly different.
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Boudinot et al. [Bou+09] and Nervo et al. [Ner+19] proposed that mice with partial
AChE deficiency were remarkably adapted to AChE deficit in the brain, autonomic nervous
systems, and muscles. Indeed, the most frequent respiratory cycles before injection are
composed with the inspiration of type A,B,C and the expiration of kind 0,1,2. Looking
at Figure 5.7, these reference sequences share similar duration and volume. Therefore, it
is impossible to differentiate the genotypes based on inspiration/expiration duration or
volume.

The present study shows that the distributions of inspiration and expiration classes on
AChE1iRR mice are similar. AChE1iRR mice do not have AChE in skeletal muscle. These
mice show a high homogeneity of adaptation despite muscle weakness. In contrast, PRiMA
mice, which have AChE deficiency in the brain and autonomic nervous systems, adapted
well to AChE inhibition, but showed heterogeneous ventilation modality. The heterogeneity
is apparent in inspiration and expiration classes, which suggests the possibility of different
ventilation modalities to cope with AChE deficit in the nervous system. The cohort of
ColQ mice also presents heterogeneity in ventilation modalities, specifically for inspiration.
As discussed, the inspiration of ColQ mice is characterized by types C and D. In contrast,
the inspiration of other genotypes is characterized by types A and B. While ColQ and
AChE1iRR mice have similar AChE deficiency in neuromuscular junctions, AChE1iRR
mice adapt better than ColQ mice which also have AChE deficit in other tissues. This
result suggests that AChE deficit in skeletal muscle is insufficient to affect these mice’s
inspiration.

If the respiratory adaptations are different, it is not surprising that the consequences of
the injection of physostigmine are so variable. Visualization of inspiration and expiration
classes, either in RC maps or bar code, makes it possible to account for this diversity.
After injection of physostigmine, the changes tend to affect inspiration in AChE1iRR and
ColQ mice, whereas expiration is more affected in WT and PRiMA mice.

In summary, representing respiratory cycles by classes sharing similar shapes reveals a
diversity of unsuspected ventilation modalities that were not identifiable with descriptors
deduced from the airflow. This rich information is synthesized in graphical representations
highlighting how mice respond differently to cholinesterase deficits or inhibition.

5.5.3 Inspiration and expiration classes evoke distinct biological processes.

Inspiration and expiration classes are defined without prior knowledge of underlying
biological processes. Inspiration classes A and B represent a regular inspiration phase,
while classes C and D represent an inspiration phase with a more or less significant pause.
The pauses in category C are very short and always during inspiration; they probably
correspond to a motor impairment during lung inflation (the main action of the diaphragm,
a powerful muscle) or by a fine control of the glottis. The longer pauses of class D may
occur during the air inflow and are probably similar, in nature, to class C. In contrast, the
long pauses of Class E correspond to a sort of pause before the air enters the lungs. From
a physiological point of view, these pauses could correspond to a delay in the glottis’s
active opening, which is required to allow air to enter into the trachea. Two situations can
lead to the glottis remaining closed: the cessation of muscle contractions that control the
glottis opening or the spasm (cramp) of the muscles that control the closing of the glottis.
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Expiration class 0 represents a regular and probably passive phase of expiration. Classes
2,3 and 4 start with a post-inspiratory pause whose duration increases progressively from
category 2 to category 4. These post-inspiratory pauses are well described in the literature
and appear in different physiological conditions. They appear when it is necessary to
increase the air pressure in the lungs (short pauses) or as reflexes (long pauses), such as
those resulting from inhaling molecules that irritate the upper airways [Dut+14].

From these results we can conclude that inspiration and expiration classes learned from
a subset of recordings selected from [Ner+19] carry interpretable physiological meaning.
It is important to note that these classes are specific to the experiment. For instance,
applying our method to a set of signals presenting bronchoconstrictions will likely lead to
classes differentiating the severity/variety of constrictions in a finer way than using the
EF50 metric [GB21].

5.6 Conclusion

This chapter introduced a baseline embedding method for analyzing mice’s ventilation. It
is a shape-based approach that creates a symbolic embedding of respiratory cycles with a
DTW-based Kmeans algorithm, a tool from machine learning for time series. This simple
and effective method surpasses current approaches by discovering ventilation modalities
untractable with classical descriptors. Specifically, the resulting symbolic representation
allows the characterization of genotype-related adaptation to ChE deficiency and reveals
heterogeneous responses after drug exposure.





Chapter 6

Deformation-based embedding

Key points:

1. This chapter proposes an unsupervised shape-based method, named TS-
LDDMM, for embedding time series of variable length and potentially
irregularly sampled by fixed-size vectors. Each vector encodes the unique
deformation mapping a referent time series to the observed one.

2. This method is built upon Large Deformation Diffeomorphic Metric Mapping
(LDDMM), a framework from shape analysis that learns a unique deforma-
tion mapping two geometrical objects by integrating ordinary differential
equations.

3. Deformations learned with LDDMM needed to be specified to ensure that
the deformed time series remains a time series throughout the integration of
the differential equations.

Contributions:

1. Section 6.3 describes a class of deformations preserving the graph structure of
time series while ensuring a transitive action (Theorem 3). Lemma 1 describe
suitable Reproducible Kernel Hilbert spaces for encoding such deformations.

2. Appendix B.5 demonstrates the identifiability of the model by estimating the
true generating parameter of synthetic data, and we highlight the sensitivity
of our method concerning its hyperparameters.

3. Appendices B.6 and B.7 illustrate the quantitative interest of such represen-
tation on classification tasks on real shape-based datasets with regular and
irregular sampling.

4. Section 6.5.2 showcases the interpretability of TS-LDDMM embedding on
the analysis of mice ventilation.

Associated paper:

• Thibaut Germain et al. “Shape analysis for time series”. In: Advances in
neural information processing systems (2024)
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6.1 Introduction

This chapter describes an unsupervised shape-based method for embedding time series of
variable length and potentially irregularly sampled by fixed-size vectors and tailored for
any subsequent statistical analysis.

From distance to deformations. The approach presented in the previous chapter
ensures the learning of meaningful clusters by relaxing the DTW invariance to time
warping through restrictions the time warping set with the Sakoe-Chiba constraint. It
means that when comparing a respiratory cycle to a reference sequence, the distance is
no longer invariant to time warping; instead, it evaluates, to some degree, the warping de-
formations. Roughly speaking, the clustering algorithm learns the clusters by quantifying
the respiratory cycles’ deformations to the reference sequences.

To clarify, Figure 6.1 illustrates how a time series f is mapped onto another time series
g through a distortion h and a time parameterization γ−1 by the relation (f+h)◦γ−1 = g.
It corresponds to a deformation caused by the group action outlined in Equation (1.9).
Building on the previous observation, an alternative approach for embedding time series
consists of embedding the deformation (h, γ−1) mapping a referent time series f0 to
any other time series f . This approach raises identifiability concerns, addressed in this
chapter, where we propose an unsupervised method representing respiratory cycles through
the vectorized embedding of deformations. This method draws on Large Deformation
Diffeomorphic Metric Mapping (LDDMM), a framework from shape analysis.
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f h γ−1 g

Figure 6.1 Illustration of a relevant deformation mapping f on g with the distortion h and the
time parametrization γ−1 by the relation: (f + h) ◦ γ−1.

A deformation-based embedding. With the mice experiment as an illustration, we
first represent a respiratory cycle signal by its graph, i.e., G(I, f) = {(t, f(t)) | t ∈ I}.
The proposed method learns parametric deformations (ϕαj )j∈[[1,N ]] that map a reference
respiratory cycle G(I0, f0) to a set of respiratory cycles (G(Ij , fj))j∈[[1,N ]], i.e ϕαj ·G(I0, f0) ∼
G(Ij , fj) where ϕ · G(I, f) = {ϕ(t, f(t)) | t ∈ I}. Importantly, the learning procedure is
designed so that there exists a unique set of parameters αj that permits the mapping
between G(I0, f0) and G(Ij , fj), guaranteeing the identifiability of G(Ij , fj) by αj . The
resulting set (αj)j∈[[1,N ]] are vectorized embeddings of the respiratory cycles, which can
be used in subsequent statistical analysis. Figure 6.2 illustrates the embedding workflow
with mice respiratory cycles.

𝖦(𝖨0, f0)

𝖦(𝖨1, f1) 𝖦(𝖨2, f2)

𝖦(𝖨5, f5)

𝖦(𝖨4, f4)
𝖦(𝖨3, f3)

ϕα1 ϕα2

ϕα3

ϕα4

ϕα5

α1
α2
α3
α4
α5

Figure 6.2 Illustrations of the deformation-based embedding workflow on mice respiratory cycles.
The deformation ϕαj

mapping the referent respiratory cycle G(I0, f0) to an observed respiratory
cycle G(Ij , fj) is learned, and its parametrization αj provides an embedding of the corresponding
cycle.

Refining the LDDMM framework. The parametric deformations are diffeomor-
phisms, i.e. topology-preserving smooth maps with smooth inverse, learned by leveraging
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the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework [Beg+05;
Vai+04]. Specifically, a diffeomorphic deformation ϕαj is learned by integrating an ordi-
nary differential equation parametrized in a Reproducing Kernel Hilbert Space (RKHS).
Notably, LDDMM provides a sparse and interpretable parameterization of diffeomor-
phisms (αj)j∈[[1,N ]], which can be identified with respiratory cylcles (G(Ij , fj))j∈[[1,N ]].
motivating our choice to propose a method built upon this framework. This characteristic
makes it a compelling foundation for the method we propose.

Initially developed for computational anatomy, LDDMM was designed to address
spatial geometrical objects, such as images of organs and bones, where diffeomorphisms
correspond to anatomically meaningful deformations. However, the action of a general
diffeomorphism on graph time series does not necessarily result in a graph time series, see,
e.g., Figure 6.3, as a graph time series has more structure than a simple curve [Gla+08].
Our contributions arise from this observation: we specify the class of diffeomorphisms
preserving the time series graph structure and show how to learn them. This change is
fruitful in representing time series deformations as illustrated in Figure 6.4.
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[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]

Figure 6.3 A time series’ graph G = {(t, f(t)) | t ∈ I} can lose its structure after applying a
general diffeomorphism ϕ · G: a time value can be related to two values on the space axis. ϕ is a
rotation in this illustration.

Figure 6.4 LDDMM and TS-LDDMM (our approach) are applied to ECG data. We observe
that LDDMM, using a general Gaussian kernel, does not learn the time translation of the first
spike but changes the space values, i.e., one spike disappears before emerging at a translated
position. At the same time, TS-LDDMM handles the time change in the shape. This difference
in deformations implies differences in feature representations.
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Notation. We denote by Cm(U,E) the set of m-times continously differentiable functions
defined on an open set U to a normed vector space E, by D(O) the set of diffeomorpshim
defined on an open set O to O, and by ||u||∞ = supx∈U |u(x)| for any bounded function
u : U→ E.

Chapter overview. First, we provide some background on the LDDMM framework
and its computation. Specifically, we describe its procedure for building diffeomorphisms
by flowing geodesic shooting equations parametrized in an RKHS and its implications
in learning linear representations in a shape space. Secondly, we specify our extension
of LDDMM, called TS-LDDMM, to the case of time series by providing a class of
diffeomorphisms preserving the graph structure of time series and deriving suitable
RKHSs for learning such diffeomorphisms. Thirdly, we present the related work. Finally,
we showcase the application of TS-LDDMM with the analysis of mice ventilation. For
conciseness, ablation studies and benchmarks are summarized and relegated in appendices.

6.2 Background on LDDMM

This section exposes how to learn the diffeomorphisms ϕα with the LDDMM framework
initially introduced in [Beg+05]. In a nutshell, ϕα corresponds to a differential flow
related to a learnable velocity field parametrized by α and belonging to a well-chosen
Reproducing Kernel Hilbert Space (RKHS). We invite readers interested in the LDDMM
framework to read the book [You10], especially chapters 8 to 12.

Let us consider a source shape x = (xi)i∈[[1,nx]] and a target shape y = (yi)i∈[[1,ny ]],
living in the ambient space Rd. These sets x,y usually refer to meshes of continuous
objects, e.g., surfaces, curves, images, etc. The basic problem that we consider in
this section is the following. We aim to find a unique diffeomorphism ϕ such that the
transformation of the source shape by ϕ, i.e. ϕ · x = (ϕ(xi))i∈[[1,nx]], and the target shape
y are similar according to a well specified data fidelity function L.

6.2.1 Large diffeomorphic deformations

Building large diffeomorphic deformations. Intuitively, LDDMM builds a large
diffeomorphic deformation ϕv by concatenating infinitesimal small deformations. Formally,
ϕv is the flow of a time-varying vector field v in Rd satisfying some smoothness properties
and such that for any x0 ∈ Rd and τ ∈ [0, 1]:

dy(τ)

dτ
= vτ (y(τ)), y(0) = x0, ϕv

τ (x0) = y(τ), ϕv = ϕv
1, (6.1)

where v : τ ∈ [0, 1] 7→ vτ ∈ V, and V is a Hilbert space of continuously differentiable
vector fields in Rd vanishing at infinity. Following [Gla05, Theorem 5], to guarantee
the existence and diffeomorphic nature of ϕv, it should exist cV > 0, such that for any
u ∈ V, ∥u∥∞ + ∥du∥∞ ≤ cV∥u∥V, and v ∈ L2([0, 1],V) should be square integrable, i.e.∫ 1
0 ∥vτ∥2Vdτ <∞.

If the smoothness conditions hold, the application τ ∈ [0, 1] 7→ ϕv
τ is a flow of

diffeomorphisms with ϕv
0 = Id, ϕv

τ (x0) is the position at τ of the particle that was at the
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position x0 at time τ = 0 by moving along v, and ϕv = ϕv
1 the diffeomorphic deformation

of interest. This procedure offers a general recipe to construct diffeomorphism given a
well-specified functional space V. This transport is illustrated in Figure 6.4.

With this in mind, the velocity field v could be estimated by minimizing the functional:

v ∈ L2([0, 1],V) 7→ L(ϕv · x,y) ∈ R . (6.2)

However, two computational challenges arise. First, this optimization problem is ill-posed;
there is no guarantee of the solution uniqueness as several time-varying vector fields v
may lead to the same diffeomorphism ϕ mapping x to y. In addition, a parametric family
VΘ ⊂ L2([0, 1],V), parameterized by Θ, is sought to efficiently solve this minimization
problem.

A group of diffeomorphisms with a right-equivariant metric. Interestingly, the
set of diffeomorphisms of Rd:

DV = {ϕv | v ∈ L2([0, 1],V)} , (6.3)

is a group for which we can define a right-equivariant metric by first defining the application
that for any ϕ ∈ DV:

d(Id, ϕ) = inf
v∈L2([0,1],V)

{(∫ 1

0
∥vτ∥2Vdτ

) 1
2

| ϕv = ϕ

}
. (6.4)

The previous infimum is reach for a certain v∗ ∈ L2([0, 1],V), and the application
dD(ϕ, ϕ

′) ∈ D2
V 7→ d(Id, ϕ′ ◦ ϕ−1) ∈ R+ is a right-equivariant metric on DV, leading to

the complete metric space (DV, dD), (proofs [Gla05, Chapter 1]). In addition, the curve
τ 7→ ϕv∗

τ can be understood as a geodesic in DV going from Id to ϕ and conserving its
kinetic energy along time [Gla05, Chapter 1]:

∀τ ∈ [0, 1], ∥v∗τ∥V = ∥v∗0∥V . (6.5)

To summarize, geodesics are minimizers of the total kinetic energy:

inf
v∈L2([0,1],V)

{
1

2

∫ 1

0
∥vτ∥2Vdτ | ϕv = ϕ

}
. (6.6)

Therefore, by deriving differential constraints related to the minimum of (6.6) and using
Cauchy-Lipschitz conditions, geodesics can be defined solely by giving the initial velocity
v0 ∈ V [MTY06]. Denoting by τ 7→ ρv0(τ) ∈ DV the geodesic starting from the Id with
initial velocity v0 ∈ V, we define the exponential map as

expId : v0 ∈ V 7→ ρv0(1) ∈ DV . (6.7)

Using expId(v0) instead of ϕv, the previous matching problem becomes a geodesic shooting
problem:

inf
v0∈V

{
L(expId(v0) · x,y) + λ∥v0∥2V

}
, (6.8)
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where λ > 0 is a balancing factor between the data fidelity term and the "amount" of
deformations, as d(Id, expId(v0)) = ∥v0∥V by combining (6.5) and (6.4). The existence
of a solution is guaranteed under mere conditions on L by [Cha13, Theorem 1.3.1] and
using expId(v0) instead of ϕv for any v ∈ L2([0, 1],V) regularizes the problem and induces
a sparse representation of the learned diffeomorphisms. The regularizing factor ∥v0∥V
plays an important role in the presence of noisy data to prevent the repercussion of the
noise’ perturbations on the diffeomorphisms representations, i.e., preventing overfitting.
Moreover, by setting V as an RKHS, the geodesic shooting problem has a unique solution
and becomes tractable, as described in the next section.

6.2.2 Discrete parametrization of diffeomorpshim.

In this part, V is chosen as an RKHS [BT11] generated by a smooth kernel K (e.g.,
Gaussian). We follow [DAJ13] and define a discrete parameterization of the velocity fields
to perform geodesics shooting (6.8). The initial velocity field v0 is chosen as a finite linear
combination of the RKHS basis vector fields, n0 control points c0 = (ck,0)k∈[[1,n0]] ∈ (Rd)n0

and momentum vectors α0 = (αk,0)k∈[[1,n0]] ∈ (Rd)n0 are defined such that for any x ∈ Rd:

v0(x) =

n0∑

k=1

K(x, ck,0)αk,0 . (6.9)

In our applications, the control points (ck,0)k∈[[1,n0]] can be understood as the discretized
graph (tk, f0(tk))k∈[[1,n0]] of a starting time series (I, f). With this parametrization of v0,
[MTY06] show that the velocity field v of the solution of (6.8) keeps the same structure
along time, meaning that for any x ∈ Rd and τ ∈ [0, 1]:

vτ (x) =

n0∑

k=1

K(x, ck(τ))αk(τ) , (6.10)

In addition, the system of differential equations governing the geodesic shooting are
derived from the Hamiltonian:

H : (c,α) ∈ Rn0×d × Rn0×d 7→
n0∑

k,l=1

α⊤
k K(ck, cl)αl ∈ R , (6.11)

such that the velocity norm is preserved ||vτ ||V = ||v0||V for any τ ∈ [0, 1].





dck(τ)
dτ = vτ (ck(τ))

dαk(τ)
dτ = −

n0∑
k=1

dck(τ)K(ck(τ), cl(τ))αl(τ)
⊤αk(τ)

, (6.12)

with initial conditions ck(0) = ck,0, αk(0) = αk,0 for any k in [[1, n0]].
By (6.12), the velocity field related to a geodesic v∗ is fully parametrized by its initial

control points and momentum (xk,0, αk,0)k∈[[1,n0]].
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A tractable geodesic shooting problem. Assuming a source shape x = (xi)i∈[[1,nx]]

and a target shape y = (yi)i∈[[1,ny ]], living in the ambient space Rd, a RKHS’s kernel
K : Rd × Rd 7→ Rd×d, a data fidelity term on sets L, a numerical integration scheme of
ODE and a penalty factor λ > 0, the basic geodesic shooting step minimizes the following
function using a gradient descent method:

Fx,y : α ∈ (Rd)nx 7→ L (expId(v0) · x,y) + λ||v0||2V ∈ R , (6.13)

where v0 is defined by (6.9) and expId(v0) · x is the result of the numerical integration of
(6.12) using control points x and initial momentums α.

6.2.3 Atlas estimation

Atlas estimation is at the heart of statistical shape analysis by extending the notion of
mean and variance to the case of shape [AAT07; Vai+04].

From a computational perspective, let us consider a population of N sampled shapes
(yj)j ∈ [[1, N ]] living in the ambient space Rd and potentially of different sampling sizes.
The goal of atlas estimation is to learn a referent shape x0 ∈ (Rd)n0 representing the
average shape and the parameterization (αj

0)j∈[[1,N ]] of the diffeomorphisms ϕj mapping
x0 to individual shape yj . The atlas estimation is carried out by solving the minimization
problem with gradient descent:

argmin
x0, (α

j
0)j∈[[1,N ]]

N∑

j=1

Fx0,yj (α
j
0) , (6.14)

such that:
x0 ∈ (Rn0)d, αj

0 ∈ (Rn0)d ∀j ∈ [[1, N ]] .

It is important to notice that atlas estimations drastically reduce the complexity of
statistical analysis on shapes. Indeed, by solving of (6.14), the non-linear deformations
(ϕαj )j∈[[1,N ]] mapping the average shape x0 the observed shapes (yj)j∈[[1,N ]] are reduced
to a linear and identifiable representations (αj

0)j∈[[1,N ]]. Therefore, linear statistical
and machine learning tools can be leveraged to analyze shapes deformed by non-linear
deformations.

Going back to the case of time series, whenever deformations include time warping,
they become inevitably non-linear, making statistical analysis at a population level
difficult in several cases, including mice ventilation. In such situations, atlas estimation
with LDDMM becomes an appealing approach by linearizing complex deformations while
guaranteeing the identifiability of the represents. However, LDDMM must be refined to
preserve the graph structure of the time series, which will be the topic of the next section.

6.3 Application of LDDMM to time series analysis: TS-LDDMM

This section presents our theoretical contribution: we tailor the LDDMM framework to
handle time series data. The reason is that applying a general diffeomorphism ϕ from
Rn+1 to a time series’ graph G(I, f) can result in a set ϕ ·G(I, f) that does not correspond
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to the graph of any time series, as illustrated in the Figure 6.3. Thus, time series graphs
have more structure than a simple curve [Gla+08] and deserve their unique analysis.

To address this challenge, we need to identify an RKHS kernel K : Rn+1 × Rn+1 →
R(n+1)2 that generates deformations preserving the structure of the time series graph.
This goal motivates us to clarify, in Theorem 3, a family of diffeomorphisms preserving the
graph structure and, subsequently, a class of kernels that produce deformations belonging
to this family.

Similarly, selecting a loss function on sets L that considers the temporal evolution in a
time series graph is crucial for meaningful comparisons with time series data. Consequently,
we introduce the oriented Varifold distance.

6.3.1 Diffeomorphisms separating space and time.

We prove that two time series graphs can always be linked by a time transformation
composed with a space transformation. Moreover, a time series graph transformed
by this kind of transformation is always a time series graph. For any γ ∈ D(R) and
h ∈ C1(Rd+1,Rd), we define the deformations:





Ψγ ∈ D(Rd+1) : (t, x) ∈ Rd+1 7→ (γ(t), x) ∈ Rd+1

Φh : (t, x) ∈ Rd+1 7→ (t, h(t, x)) ∈ Rd+1
. (6.15)

As reminder, we denote by G(I, f) = {(t, f(t)) | t ∈ I} the graph of a time series
f : I→ Rd and ϕ · G(I, f) = {ϕ(t, f(t)) | t ∈ I} the action of ϕ ∈ D(Rd+1) on G(I, f). We
have the following representation theorem.

Theorem 3. Let f : J 7→ Rd and f0 : I0 → Rd be two continuously differentiable time
seriess with I0, J two intervals of R. There exist h ∈ C1(Rd+1,Rd) and γ ∈ D(R) such
that γ(I0) = J and Φh ∈ D(Rd+1),

Πγ,h · G(I0, f0) = G(J, f), with Πγ,h = Ψγ ◦ Φh . (6.16)

Moreover, for any h̄ ∈ C1(Rd+1,Rd) and γ̄ ∈ D(R), there exists a continuously differen-
tiable time series (̄I, f̄) such that Πγ̄,h̄ · G(I0, f0) = G(̄I, f̄).

Proof. Let f : J 7→ Rd and f0 : I 7→ Rd be two continuously differentiable time series with
I = (a, b), J = (α, β) two intervals of R. By setting γ : t ∈ R 7→ (β−α)(t−a)/(b−a)+α ∈ R,
we have γ(I) = J and γ ∈ D(R). By defining h : (t, x) ∈ Rd+1 7→ x−f0(t)+f◦γ(t), the map
Φh ∈ D(Rd+1), as its inverse is Φ−1

h : (t, x) ∈ Rd+1 7→ (t, x+f0(t)−f(t)) and is continuously
differentiable. Moreover, we have Πγ,h · G(f0) = {(γ(t), f ◦ γ(t)) | t ∈ I} = G(f).

Let h̄ ∈ C1(Rd+1,Rd), γ̄ ∈ D(R) and f0 ∈ C1(I,Rd) with I an interval of R. We have :

Πγ,f · G(f0) = {(γ(t), h(t, f0(t))) | t ∈ I } (6.17)

= {(t, h
(
γ−1(t), f0(γ

−1(t))
)
) | t ∈ γ(I) } . (6.18)

By defining f̄ : t ∈ γ(I)→ h
(
γ−1(t), f0(γ

−1(t))
)
, we have f̄ ∈ C1(γ(I),Rd) by composition

of continuous functions and G(f̄) = Πγ,h ·G(f0) by (6.18), which concludes the proof.
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Remark 3. Note that for any γ ∈ D(R), h ∈ C1(Rd+1), and f ∈ C1(I,Rd):

Πγ,h · G(I, f) = {(γ(t), f(t) + h(t, f(t))− f(t)) | t ∈ I} (6.19)

As a result, γ can be understood as a time parametrization and h̃ : t ∈ I 7→ h(t, f(t))−f(t) ∈
Rd as the distortion of the time series (I, f) which is congruent with the group action
depicted in Equation (1.9).

6.3.2 Kernels preserving time and space separation

As depicted on Figure 6.3-6.4, we must use specific kernels K to apply the previous
methodology when learning deformations on time series graphs. Diffeomorphisms separat-
ing time and space preserve the graph structure, and in this section, we describe kernels
of the RKHS V generating such diffeomorphism.

We denote the one-dimensional Gaussian kernel by K
(a)
σ (x, y) = exp(−∥x − y∥2/σ)

for any (x, y) ∈ (Ra)2, a ∈ N and σ > 0.
To solve the geodesic shooting problem (6.13) on Rd+1, we consider for V the RKHS

associated with the kernel defined for any (t, x), (t′, x′) ∈ (Rd+1)2:

KV((t, x), (t
′, x′)) =

(
c0Ktime 0

0 c1Kspace

)
, (6.20)

with: 



Kspace = K
(1)
σT,1(t, t

′)K
(d)
σx (x, x

′)IRd

Ktime = K
(1)
σT,0(t, t

′)

, (6.21)

parametrized by the widths σT,0, σT,1, σx > 0 and the constants c0, c1 > 0.

Lemma 1. If we denote by V the RKHS associated with the kernel KV, then for any
vector field v generated by (6.12) with v0 satisfying (6.9), there exist γ ∈ D(R) and
h ∈ C1(Rd+1,Rd) such that ϕv = Ψγ ◦ Φh.

Proof. Let v be a vector field generated by (6.12) with v0 satisfying (6.9). We remark
that the first coordinate of the velocity field vτ denoted by vtime

τ only depends on the time
variable t for any τ ∈ [0, 1]. Thus, when computing the first coordinate of the deformation
ϕv, denoted by γ, we integrate (6.1) with vτ replaced by vtime

τ , thus γ is independant of
the variable x. Moreover, γ ∈ D(R) since a Gaussian kernel induced an Hilbert space V
satisfying ∥u∥∞ + ∥du∥∞ ≤ ∥u∥V for any u ∈ V by [Gla05, Theorem 9]. For the same
reason, we have ϕv ∈ D(Rd+1), and thus its last coordinates denoted by h belongs to
C1(Rd+1,Rd), and by construction ϕv = Ψγ ◦ Φh.

Instead of Gaussian kernels, other types of smooth kernels can be selected as long as
the structure (6.20) is respected.

Remark 4. With this choice of kernel, the features associated with the time transformation
can be extracted from the momentums (αk,0)k∈[[1,n0]] ∈ (Rd+1)n0 in (6.9) by taking the
coordinates related to time. However, the features related to the space transformation are
not only in the space coordinates since the related kernel Kspace depends on time as well.
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We provide guidelines for setting the hyperparameters (σT,0, σT,1, σx, c0, c1) in Ap-
pendix B.2.

6.3.3 A data fidelity term for time series.

This section specifies the distance function L introduced in the loss function defined in
(6.13).

In practice, we can only access discretized graphs of time series, (tji , f
j
i )i∈[[1,nj ]] for any

j ∈ [[1, N ]], potentially of different sizes nj and sampled at different timestamps (tji )i∈[[1,nj ]]

for any j ∈ [[1, N ]]. Usual metrics, such as the Euclidean distance, are not appealing as
they make the underlying assumptions of equal-size sets and the existence of a pairing
between points. Distances between measures on sets (taking the empirical distribution),
such as Maximum Mean Discaprency (MMD) [DRG15; Bor+06], alleviate those issues;
however, MMD only accounts for positional information and lacks information about the
time evolution between sampled points. A classical data fidelity term from shape analysis
corresponding to the distance between oriented varifolds associated with curves alleviates
this last issue [KCC17]. Intuitively, an oriented varifold is a measure that accounts for
positional and tangential information about the underlying curves at sample points. More
details and information about oriented varifolds can be found in Appendix B.1.

From a numerical perspective, the oriented varifold measure is embedded in the dual
W∗ of an RKHS W with a kernel k : (Rd+1 × Sd)2 7→ R verifying verifying [KCC17,
Proposition 2 & 4]. Given a time series graph set G = (gi)i∈[[1,n]] ∈ (Rd+1)n, it is map to
the set (li, pi,

−→vi )i∈[[1,n−1]] defined by:




li = ∥gi+1 − gi∥
pi = (gi + gi+1)/2−→vi = (gi+1 − gi)/∥gi+1 − gi∥

, ∀i ∈ [[1, n− 1]] , (6.22)

and its embedding as oriented varifold is the measure:

µG =

n−1∑

i=1

liδ(pi,−→vi ) . (6.23)

Therefore, given two time series graph sets G0 ∈ (Rd+1)n0 and G1 ∈ (Rd+1)n1 , the data
fidelity term is defined as:

LW∗(G0, G1) = ∥µG0 − µG1∥2W∗

=
n0−1∑
i,j=1

l0i k((p
0
i ,
−→vi 0), (p0j ,−→vj 0))l0j +

n1−1∑
i,j=1

l1i k((p
1
i ,
−→vi 1), (p1j ,−→vj 1))l1j

−2
n0−1∑
i=1

n1−1∑
j=1

l0i k((p
0
i ,
−→vi 0), (p1j ,−→vj 1))l1j

In practice, we set the kernel k as the product of two anisotropic Gaussian kernels,
kpos and kdir, such that for any (x,−→u ), (y,−→v ) ∈ (Rd+1 × Sd)2:

k((x,−→u ), (y,−→v )) = kpos(x, y)kdir(
−→u ,−→v ) . (6.24)
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Note that the loss kernel k has nothing to do with the velocity field kernel denoted by KV

or other K specified in Section 6.3.2. Finally, we define the data fidelity term, L, as a
sum of one ore L2W∗ using different kernel’s width parameters σ to incorporate multiscale
information. L is indeed differentiable with respect to its first variable. The specific
kernels kpos, kdir that we use in our experiments are given Appendix B.1. For further
readings on curves and surface representation as varifolds, readers can refer to [KCC17;
CT13].

6.4 Related Works

The following paragraphs present unsupervised shape-related methods for embedding
time series of variable length and sampled irregularly. We present works from both shape
analysis and deep learning for time series.

From shape analysis. LDDMM framework is a relevant shape analysis framework
to represent curves as depicted in [Gla+08]. However, graphs of time series are a well-
structured type of curve due to the inclusion of the temporal dimension that requires
specific care (Figure 6.3). Similarly, Qiu et al [Qiu+09] proposes a method for tracking
anatomical shape changes in serial images using LDDMM. They include temporal evolution,
but not for the same purpose: the aim is to perform longitudinal modeling of brain images.

Leaving the LDDMM representation, the results of [Sri+10; Heo+24] address the
representation of curves with the Square-Root Velocity (SRV) representation. However,
the SRV representation is applied after parametrizing the temporal dimension on the unit
length segment. Consequently, the graph structure of the time series is not respected, and
the original time evolution of the time series is not encoded in the final representation.
Very recently, in a functional data analysis framework, a paper [WHS24] (Shape-FPCA)
improved by representing the original time evolution. Nevertheless, this method is made
for continuous objects and only applies to time series of the same length, making the
estimation more sensitive to noise and interpolation procedures.

From deep learning for time series. Balancing between discrete and continuous
elements is a challenging task. In the deep learning literature [Che+18; Kid+20; TR19;
JB19; Liu+19; Ans+23], Neural Ordinary Differential Equations (Neural ODEs) [Che+18]
learn continuous latent representations using a vector field parameterized by a neural
network, serving as a continuous analog to Residual Networks [ZK16]. This approach was
further enhanced by Neural Controlled Differential Equations (Neural CDEs) [Kid+20] for
handling irregular time series, functioning as continuous-time analogs of RNNs [SP97]. Ex-
tending Neural ODEs, Neural Stochastic Differential Equations (Neural SDEs) introduce
regularization effects [Liu+19], although optimization remains challenging. Leveraging
techniques from continuous-discrete filtering theory, Ansari et al. [Ans+23] applied
successfully Neural SDEs to irregular time series. Oh et al. [OLK24] improved these
results by incorporating the concept of controlled paths into the drift term, similar to
how Neural CDEs outperform Neural ODEs.
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All these state-of-the-art methods previously mentioned [Gla+08; OLK24; WHS24;
Heo+24] are compared to TS-LDDMM in Appendix B.6 and Appendix B.7.

6.5 Experiment

In addition to the study of mice ventilation with the TS-LDDMM framework, we also
performed several experiments relegated in appendices and summarized in the next section
for conciseness. Specifically, we studied the parameters’ influences on the representation
identifiability. We also evaluated the robustness of the TS-LDDMM representation to
irregular sampling, and we compared classifiers based on TS-LDDMM representations
with other shaped-based methods on a classification task.

6.5.1 Summary of additional experiments

1. TS-LDDMM representation identifiability, Appendix B.5: On synthetic
data, we evaluate the ability of our method to retrieve the parameter v∗0 that
encodes the deformation expId(v

∗
0) acting on a time series graph G by solving the

geodesic shooting problem (6.13) between G and expId(v
∗
0) · G. Results show that

TS-LDDMM representations are identifiable or weakly identifiable depending on
the velocity field kernel KV specification.

2. Robustness to irregular sampling, Appendix B.6: We compare the robustness
of TS-LDDMM representation with 9 URL methods handling irregularly sampled
multivariate time series on 15 shape-based datasets (7 univariates & 8 multivariates).
We assess methods’ classification performances under regular sampling (0% missing
rate) and three irregular sampling regimes (30%, 50%, and 70% missing rates),
according to the protocol depicted in [Kid+20]. Results show that our method,
TS-LDDMM, outperforms all methods for sampling regimes with missing rates: 0%,
30%, and 50%.

3. Classification benchmark on regularly sampled datasets, Appendix B.7:
We compare performances of a kernel support vector machine (SVC) algorithm
based on TS-LDDMM representation with 3 state-of-the-art classification methods
from shape analysis on 15 shape-based datasets (7 univariates & 8 multivariates).
Results show that the TS-LDDMM-based method outperforms other methods
(best performances over 13 datasets), making TS-LDDMM representation relevant
for time series shape analysis.

6.5.2 Application to mice ventilation analysis

A reminder. As a reminder from Chapters 4 and 5, respiration is responsible for
supplying O2 and eliminating CO2. Its proper functioning depends on the nervous
system’s precise and coordinated control of the ventilation muscles. The enzymes AChE
and BChE play a crucial role in this system by synchronizing nervous system signals with
muscle activity. Certain drugs inhibit AChE/BChE activity, leading to severe respiratory
dysfunctions, which can be fatal. The underlying causes of these dysfunctions are not
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PC densities
(b) LDDMM shooting

PC densities (a) TS-LDDMM shooting

Figure 6.5 Analysis of the two principal components (PC) related to mice ventilation before
exposure with TS-LDDMM representations (a), and LDDMM (b). In both cases and for all PC,
the left plot displays PC densities according to mice genotype and right plot displays deformations
of the reference graph c0 along each PC.

yet fully understood, making it an active area of research aimed at developing effective
treatments. One approach to investigating this complexity involves using genetics to
remove AChE/BChE in specific tissues and locations selectively. In the experiment of
interest, the respiration of mice with different genotypes is recorded via plethysmography
during a control period before exposure to an inhibitor, followed by monitoring the
evolution of their respiratory patterns. We aim to use shape-based unsupervised methods
to infer distinct ventilation modalities from respiratory cycles. These modalities provide
insights, at least partially, into the mechanisms at play at a molecular scale, and by
analyzing their evolution over time and across genotypes, we aim to validate or refute
various hypotheses regarding the effects of AChE/BChE inhibition.

In the previous chapter, we analyzed plethysmography signals using a symbolic
representation of respiratory cycles with a DTW-based clustering approach. As a baseline,
this method produced physiologically meaningful results, identifying ventilation modalities
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(a) colq cycle (b) PC1 vs PC2 (c) wt cycle

Figure 6.6 (a) an example of ColQ respiratory cycle. (b) Referent respiratory cycle of individual
mouse cj0 in the TS-LDDMM PC1-PC2 coordinates system of c0. (c) an example of WT
respiratory cycle.

specific to different genotypes or drug exposure, such as prolonged pauses after inspiration
or motor control impairment in ColQ mice. It also revealed heterogeneous adaptation
patterns in mutant mice with genotypic ChE deficiencies. In many ways, this initial
analysis overcame the limitations of previous methods, which relied solely on basic
descriptors that could not capture the diversity of observed modalities. In this chapter, we
build upon this foundation by employing vectorized representations of respiratory cycles,
focusing on the entire deformation mapping to a reference cycle. This is achieved by
adapting the LDDMM framework to the time series case, and in this section, we explore
the potential of these representations.

Experimental protocol. We considered two experimental scenarios; the first focuses on
mice ventilation before exposure to explore the inter-individual variability and genotype-
specific ventilation modalities. The second is similar to the previous chapter and focuses
on whole recordings to analyze the evolution of mice’s ventilation after exposure to a
ChE inhibitor. We only considered two genotypes for both scenarios: the control group
(WT) and the mutant ColQ presenting AChE deficiency in neuromuscular junctions. In
both cases, the baseline protocol was the following:

1. Creating the dataset by extracting N respiratory cycles with the procedure described
in Section 4.1.3.

2. Learning the referent respiratory cycle c0 and the representations of respiratory
cycles (αj

0)j∈[[1,N ]] by solving (6.14) using TS-LDDMM. αj
0 being the momentum of

the initial velocity field of the geodesic encodings the diffeomorphisms mapping c0
to the jth respiratory cycle.

3. Performing a Kernel-PCA on the initial velocity fields (6.9) belonging to V and
encoded by the pairs (αj

0, c0)j∈[[1,N ]].

In addition, we performed the experimental protocol with LDDMM representation for
the first scenario to compare TS-LDDMM with LDDMM. The first experiment includes
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N1 = 700 respiratory cycles collected before exposure. The second experiment includes
N2 = 1400 respiratory cycles with 25% (resp. 75%) before (resp. after) exposure. The
signals were down-sampled to 1,000Hz, and Appendix B.8 describes settings for TS-
LDDMM and LDDMM. Essentially, varifold losses are identical for both methods, and
the velocity field kernels are set to encompass time and space scales.

Geodesic shooting along principal component directions. When performing a
kernel-PCA in the space of initial velocity fields V, any principal component (PC) vpc0 is
itself an initial velocity field encoded by a pair (c0,α

pc
0 ). PCs encode the principal axis

of deformations, and it is possible to shoot along the geodesic they encode as depicted
in (6.12). Performing shootings along PC directions with amplitudes related to their
variance permits the interpretation of the main direction of deformations.

Mice ventilation before exposure. We focus on the analysis of the two first Principal
Components (PC) for TS-LDDMM (Figure 6.5a) and LDDMM (Figure 6.5b). Looking at
the geodesic shooting along PCs, Figure 6.5 shows that principal components learned with
TS-LDMM lead to deformations that remain respiratory cycles. In contrast, deformations
learned with LDDMM are challenging to interpret as respiratory cycles. The LDDMM
velocity field kernel is a Gaussian anisotropic kernel that accounts for time and space
scales; however, the entanglement of time and space dimensions in the kernel does not
guarantee the graph structure, and it makes the convergence of the method complex
(relative varifold loss error: TS-LDDMM: 0.06, LDDMM: 0.11).

Concerning TS-LDDMM Figure 6.5a, its PCs refer to deformations directions carrying
different physiological meanings. Indeed, the geodesic shooting along these directions
indicates that PC1 accounts for variations of the total duration of a respiratory cycle,
while PC2 expresses the trade-off between inspiration and expiration duration. In addition,
the distribution of ColQ respiratory cycles along PC1 is wider than in WT mice, which is
in congruence with observation of the previous chapter where we have seen that mutant
mice, like ColQ, inter-individual adaptation to their ChE deficiency is variable. This
observation can also be seen in Figure 6.6b where a referent respiratory cycle cj0 is learned
by atlas estimation (6.14) for each mouse and encoded in the (PC1,PC2) coordinate
system of c0 by registration (6.8). Indeed, the average respiratory cycles of ColQ mice
are more spread out than those of WT mice. Going back to the densities of PC1, ColQ
mice distribution has a heavier tail toward negative values compared to WT mice. When
shooting in the opposite direction of PC1, we can observe that the inspiration is divided
into two steps. As seen in the previous chapter, an inspiration in two steps indicates
motor control difficulties specifically for ColQ mice as they have a ChE deficiency in
neuromuscular junctions. Figure 6.6a is an example of ColQ respiratory cycle with
negative PC1 coordinate.

Mice ventilation evolution after exposure to a ChE inhibitor. This experiment
only focuses on the first principal components learned from TS-LDDDM representations
of respiratory cycles randomly sampled before and after inhibitor exposure. Figure 6.7a
illustrates the geodesic shootings along PC1. Again, PC1 accounts for variations in



6.5. Experiment 131

(a) TS-LDDMM PC1 shooting

(b) PC1 densities (c) Scatter PC1 vs PC3

Figure 6.7 Analysis of the first Principal Component (PC1) related to mice ventilation before and
after exposure with TS-LDDMM representations. (a) displays PC densities per mice genotype,
(b) illustrates deformations of the reference respiratory cycle c0 along PC1, and (c) displays all
respiratory cycles with respect to time in PC1 and PC3 coordinates

respiratory cycle duration, but more importantly, it can be observed on the deformation
at -1.5 σPC the apparition of a long pause after inspiration. This phenomenon was also
observed in the previous chapter and was prevalent in WT mice. Congruently, Figure 6.7c
indicates that pauses appear after inhibitor exposure as cycles with negative PC1 values
mainly occur after 20 minutes and present more variability along PC3. In addition,
Figure 6.7b shows a bimodal distribution for WT mice with one of the peaks in the
negative values. This peak was not observed in the previous experiment Figure 6.5a. It
indicates that pause after inspiration is a prevalent ventilation modality in WT mice after
inhibitor exposure.

In the same way, in the previous chapter, we observed that ColQ mice were less
affected by inhibitor exposure than WT mice. This difference in reaction is probably
due to their habituation to AChE deficiency in neuromuscular junctions. Similarly, the
distributions of ColQ mice’s respiratory cycles along PC1 in both experiments are similar
and account for the same deformation, suggesting that ColQ mice weakly react to the
exposure of ChE inhibitors.

Experiment Conclusion. The straightforward analysis of mice ventilation using
TS-LDDMM representations highlights the method’s ability to facilitate meaningful
interaction between experts and the data. Notably, the principal deformations learned
through TS-LDDMM in the context of mice ventilation reveal physiologically significant
deformations. The statistical and visual interpretation of these deformations enabled
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the characterization of some mice genotypes, ventilation modalities, and the effects of
inhibitor exposure.

6.6 Conclusion

This chapter introduced TS-LDDMM, an unsupervised shape-based embedding method
for time series. An essential contribution was specifying a class of diffeomorphisms that
preserve the graph structure of time series, which can be learned using the LDDMM
framework. Given a reference time series, a diffeomorphism is fully determined by its
initial conditions through geodesic shooting equations. By learning the diffeomorphisms
mapping the referent time series to a set of variable length time series and irregularly
sampled, the initial conditions provide linear representations of time series. This approach
enables the application of linear statistical learning methods in subsequent analysis.

Experiments demonstrated that classifiers based on representations learned with TS-
LDDMM outperformed traditional shape-analysis methods, deep learning, and machine
learning approaches for shape-related classification tasks involving irregularly sampled
time series. Furthermore, applying atlas estimation with TS-LDDMM to analyze mice
ventilation yielded promising results, offering statistically grounded and interpretable
insights into ventilation modalities, genotype differences, and the effects of inhibitor
exposure.



Chapter 7

Conclusion & Perspectives

Conclusion

This thesis tackled challenges related to shape-based comparisons in biomedical temporal
data, where deterministic patterns are essential for statistical analysis. The work is
divided into two parts: the first focuses on searching and discovering such patterns, while
the second concentrates on comparing them.

Searching or discovering patterns. The first part addressed the problem of searching
or discovering deterministic patterns in long time series with distances independent
of some irrelevant sources of variability modeled with a group of deformations. The
presented methods prioritize interpretability, high efficiency, and ease in modeling the
group of deformations in order to facilitate meaningful interactions between data and
biomedical researchers. To that end, a general framework has been proposed to build
deformation-invariant distances, which can be plugged into state-of-the-art algorithms
for similarity search and motif discovery without sacrificing efficiency. Specifically, when
sources of variability can be modeled by a group of deformations acting on time series
as a vector subspace, it is possible to create a deformation-invariant embedding, and
the resulting distance is the Euclidean distance between embeddings. This framework
generalizes the well-known Z-normalized Euclidean distance and has shown great success
in several biomedical use cases.

Additionally, an interpretable and interactive algorithm for motif discovery has been
proposed. This algorithm represents a time series through a diagram whose visual
interpretation allows the identification and extraction of repeated patterns. This algorithm
outperforms existing motif discovery algorithms on a biomedical benchmark, and an
application leveraging its interpretability and efficiency has been proposed to allow
meaningful interaction between the data and biomedical researchers.

Comparing patterns. The second part addressed the problem of comparing deter-
ministic patterns. The proposed methods were motivated by the problem of comparing
mice respiratory cycles recorded by plethysmography and necessitating more complex
groups of deformations to handle time warping. The aim was to identify mice’s ventilation

133



134 Chapter 7. Conclusion & Perspectives

modalities and the breathing evolution when mice of different genotypes are exposed
to a drug. A first approach, intended as a baseline, compares respiratory cycles with a
DTW-based clustering algorithm, leading to a shape-based symbolic representation where
each symbol corresponds to a cluster. Experimental results have shown that clusters
can be connected to genotype-related ventilation modalities with genotype-dependent
response to the drug exposition.

As an improvement toward a more statistically founded method, the second approach
built a fixed-size vector representation of irregularly sampled and variable length time
series with the vectors parametrizing the deformations mapping a referent time series to
the observed time series. This method draws on Large Deformation Diffeomorphic Metric
Mapping (LDDMM), a framework from shape analysis. The LDDMM framework was
refined to ensure the spatiotemporal nature of deformed time series while guaranteeing the
bijectivity of the embedding method. This method offers statistical results and a visual
interpretation of shapes and deformations. Conducting simple statistical analysis in the
respiratory cycle embedding space has shown that the principal axes of deformations carry
physiological meanings that are informative about mice ventilation modalities dependent
on the genotype and the drug exposure.

Perspectives

Refining similarity search and motif discovery for multivariate time series

This thesis explores shape-based similarity search and motif discovery for multivariate
time series under the simplifying assumption that deterministic patterns are present across
all channels. However, this assumption breaks down in several cases, particularly when
patterns only appear in a subset of channels, as seen in various biomedical applications
[YKK17; Min+07]. Specifically, the definition of shape and deformations must be refined
to account for the variability inherent in multivariate time series while focusing on
interpretability and efficiency.

Improving mice ventilation analysis with TS-LDDMM

The potential of TS-LDDMM for analyzing mice ventilation can be explored further in
two directions:

• Reducing inter-individual variability: As we have observed, ventilation varies
between mouse and mouse. It can be due to physiological differences or adaptation
to some deficiency, like mutant mice. These inter-individual variations can limit the
analysis of ventilation modalities. The LDDMM parallel transport along geodesics
could be useful for addressing this issue by aligning the data across individuals
[Pir+21; Lou+17].

• Exploring ventilation dynamic from TS-LDDMM representations with
time series algorithms: Unlike symbolic embedding, TS-LDDMM representa-
tions retain much information about respiratory cycles in a vectorized way. Once
embedded, plethysmography signals result in a set of multivariate time series, which
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can be analyzed using a wide range of time series algorithms developed in machine
learning. It opens the door to possibilities such as identifying anomalies [SWP22],
discovering motifs [TL17], or performing change point detection [TOV20], among
many other techniques.

Computational behavior analysis

Figure 7.1 Hierarchical organization of Fruit flies’ behavior, from [EB16].

Mice ventilation analysis is closely related to the emerging field of computational
behavior analysis for animals [EB16; Gom+14]. Rooted in ethology, this discipline
quantitatively analyzes animal survival and social behaviors observable from an external
eye [Cas+15]. The central concept is that behaviors can be modeled as sequences of simpler
actions and organized in a hierarchical order of complexity. The simplest behaviors are
basic actions called behavioral primitives. For example, the courtship behavior combines
simpler behaviors like chasing or singing, which can also be broken down into even smaller
behaviors, as depicted in Figure 7.1.

Computer vision requirements. Animal behavior analysis primarily concentrates on
posture-based behaviors, as videos offer a non-invasive and accessible means of observation.
For instance, a study [Ber+14] identified sex-specific flying and grooming behaviors of
fruit flies by filming them in a controlled environment. An important preprocessing step
toward behavior analysis consists of extracting animals’ poses from video footage, and
several methods have been proposed to tackle this problem with recent advancements in
deep learning [Ye+24; Lau+22; MM20; Mat+18].

Behavior analysis methodology. Once the time series of animals’ poses have been
extracted, the approach to behavior analysis follows a framework identical to the one
of mice ventilation analysis Section 4.1 involving time series segmentation, sequence
embedding, and analysis of the embedded time series. To leverage the hierarchical
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organization of behaviors from primitives, researchers have focused on unsupervised
methods that segment a time series in primitive actions and embed them with symbols,
i.e., each primitive action corresponds to a symbol. Currently, most behavior studies
involving symbolic representations remain at the scale of primitives and analyze their
distribution at a cohort level. For instance, the pioneer method Moseq [Wil+20] uses an
autoregressive hidden Markov model to infer the primitives and the segmentation of freely
moving mice in a closed environment, with the hidden states as behavioral primitives.
Mice were exposed to different drugs, and by comparing the primitive distributions, the
study reveals that some primitives only manifest when mice are exposed to a specific
drug.

Potential benefits from shape analysis and machine learning for time series.
Current methods in computational behavior analysis can be enhanced by integrating
shape analysis and machine learning techniques for time series in several key areas:

• Video Embedding: Poses of subjects are a crucial feature in video-based behavioral
studies, typically well-estimated by the latest deep learning algorithms [Ye+24;
Zhe+23]. By incorporating shape analysis, these poses can be embedded into a
shape space, enabling comparisons independent of irrelevant sources of variability.

• Discovery of Behavior Primitives: Machine learning methods for time series,
such as anomaly detection [SWP22], segmentation [TOV20], and motif discovery
[TL17], can be employed to identify specific patterns and regimes that may hold
significance in behavioral analysis. The discovered patterns or regimes can be the
seeding datasets to learn estimator for detecting primitives with active learning
[Mos+23; KG20; Elh+13].

• Hierarchical Behavior Analysis: The dynamic analysis of symbolic representa-
tions and the hierarchical organization of behaviors is an active area of research
[Zin+24; Wei+24; Mag20]. This field could benefit from advances in symbolic time
series representation [Com24; Sen+18], and improvements in T-pattern analysis
[Sal+10; TSP08].



Chapitre 8

Introduction (en français)

Points clés :

1. Les séries temporelles sont courantes dans les applications biomédicales où
elles présentent souvent des formes déterministes, récurrentes ou anormales
précieuses en analyse statistique en raison de leur apparence cohérente entre
différents sujets. En revanche, une utilisation précise et efficace de ces formes
nécessite des outils mathématiques appropriés.

2. La comparaison des formes temporelles se situe à l’intersection entre appren-
tissage automatique pour les séries temporelles et analyse des formes où les
sources de variabilité sont modélisées comme des déformations d’une forme
de référence. Malgré le grand succès des travaux issus de l’apprentissage
automatique pour les séries temporelles qui s’apparentent à la notion de
forme, ce cas spécifique n’a été que partiellement traité en l’analyse de forme
suggérant que les deux communautés pourraient tirer profit l’une de l’autre.

3. Cette thèse vise à tirer parti de l’apprentissage automatique pour les séries
temporelles et de l’analyse de formes pour proposer des méthodes adaptées
aux recherches biomédicales nécessitant le traitement de données temporelles.
Un intérêt particulier est aussi mis sur l’interprétation visuelle des formes et
des déformations, une approche cruciale dans de nombreux cas.

Contributions :

1. Dans ce chapitre, un cadre général pour l’analyse des formes temporelles est
proposé. Ce cadre constitue les fondations pour les chapitres suivants. En
particulier, il définit l’objet séries temporelles, le groupe de déformations qui
peuvent agir sur celles-ci ainsi que la manière dont ces déformations affectent
les séries temporelles.
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8.1 Motivation

L’analyse des données expérimentales pour valider ou réfuter une hypothèse est un
principe fondamental de la science moderne. Cette approche est particulièrement centrale
en recherche biomédicale, où elle permet notamment d’approfondir la compréhension des
structures et des fonctions biologiques, de mettre au point de nouveaux traitements ou
encore d’améliorer les diagnostics et les pratiques médicales. D’autre part, les récentes
innovations technologiques ont grandement facilité l’acquisition non invasive de données
biomédicales et parmi lesquelles les séries temporelles jouent un rôle important [GKK20 ;
Fer17].

Par exemple, les électroencéphalogrammes (EEG), Figure 8.1a, enregistrent l’activité
électrique du cerveau avec des électrodes placées autour du crâne. Parmi de nombreuses
autres applications, les EEG jouent un rôle important dans le diagnostic de troubles neuro-
logiques tels que l’épilepsie ou la narcolepsie ainsi que dans l’étude de fonctions cérébrales
en réponse à divers stimuli externes [SBH74]. De manière similaire, l’électrocardiogramme
(ECG), Figure 8.1b, mesure l’activité électrique du coeur à l’aide d’électrodes placées sur
le corps. Ces séries temporelles facilitent le diagnostic de plusieurs pathologies cardiaques
telles que l’arythmie ou l’évaluation de la réponse cardiaque à divers traitements cliniques
[Vic+19]. En revanche, les signaux de marche, Figure 8.1c, mesurent la vitesse angulaire
des pas à l’aide d’unités de mesure inertielle. Ces signaux offrent des informations pré-
cieuses pour la rééducation de patients à mobilité réduite en raison de pathologies telles
que la maladie de Parkinson ou d’accidents vasculaires cérébraux [Bar+15].

La santé humaine étant en jeu, l’analyse des données biomédicales nécessite des outils
mathématiquement et statistiquement fondés afin de garantir des interactions significatives
entre les données et le personnel qualifié.

Des données structurées. De nombreuses séries temporelles biomédicales présentent des
motifs déterministes qui reflètent l’état physiologique d’un sujet. Par exemple, des formes
d’EEG spécifiques telles que les K-complexes (pics) et les spindles (motifs sinusoïdaux)
sont représentatifs de la deuxième phase du sommeil, comme illustré Figure 8.2. De
même, la forme des battements cardiaques enregistrés par ECG peut être modifiée par
des conditions physiologiques comme les contractions ventriculaires prématurées (PVC),
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Figure 8.1 Illustrations de séries temporelles biomédicales non invasives. (a) Electroencépha-
logramme (EEG) mesurant l’activité électrique du cerveau à l’aide d’électrodes, (b) Electrocar-
diogramme (ECG) mesurant l’activité électrique du cœur, et (c) Signal de marche mesurant la
vitesse angulaire des pas à l’aide d’une unité de mesure inertielle.

Figure 8.2b. De même, les signaux de la marche varient également entre les individus
sains et ceux atteints de troubles neurologiques, voir Figure 8.2c.

Ces motifs récurrents sont pertinents en recherche biomédicale puisqu’ils sont observés
de manière cohérente chez différents sujets, ce qui en fait des variables robustes pour
mener des analyses statistiques. Néanmoins, des outils mathématiques appropriés sont
nécessaires pour établir des comparaisons précises de ces formes.

Caractéristiques de formes. Il est intéressant de noter que la comparaison de ces
motifs déterministes se résume à la comparaison de leur forme. Historiquement, cela a été
fait en comparant des caractéristiques prédéfinies et extraites des motifs, comme illustré
dans le cas des battements de coeur par la Figure 8.3 (caractéristiques des battements de
coeur). Toutefois, ces caractéristiques ont tendance à être localisées, ce qui peut entraîner
une perte d’informations discriminantes. Plus récemment, des algorithmes d’apprentissage
automatique et d’apprentissage profond ont été utilisés pour apprendre des caractéristiques
directement à partir des données. Cependant, ces méthodes nécessitent souvent de grands
ensembles de données, un luxe inabordable dans certains contextes biomédicaux. En outre,
garantir la fiabilité et l’interprétabilité des caractéristiques apprises est un domaine de
recherche actif et qui est essentiel en recherche biomédicale.

Alors que la première approche risque d’être trop réductionniste et que la seconde
tend à être trop paramétrée, une troisième approche s’appuyant sur la notion de forme
pourrait être étudiée pour remédier à ces deux limitations.
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Figure 8.2 Illustrations de motifs déterministes. (a) Sur un EEG, le K-complexe et les spindles
indiquent un sommeil en phase deux. (b) Sur un ECG, les battements de coeur des sujets souffrant
de contraction ventriculaire prématurée (CVP) ont un profil différent de celui des sujets sains.
(c) Dans un signal de marche, le pas d’un sujet atteint d’une pathologie neurologique diffère de
celui d’un sujet sain.

(a) (b)

Figure 8.3 De [Mar+17]. Illustrations de caractéristiques standard pour décrire la forme du
battement cardiaque à partir de l’ECG en vue de la classification automatique des battements
cardiaques ventriculaires prématurés ou ischémiques. Il s’agit notamment de caractéristiques qui
rendent compte de (a) la durée d’intervalles spécifiques et de l’amplitude de certains pics, ou de
(b) l’aire sous la courbe sur des intervalles spécifiques.
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Formes et séries temporelles. La communauté d’analyse des formes a défini un cadre
mathématique pour l’étude des formes d’objets géométriques, dans lequel les concepts de
forme et de déformation sont profondément liés. Par exemple, une feuille de papier peut
être déformée en la pliant ou en la dépliant. La séparation entre objet (feuille de papier)
et déformations (pliures) conduit à deux approches analytiques différentes :

1. Comparer des objets indépendamment des déformations. Par exemple,
indépendamment du pliage, une feuille de papier plane et une feuille de papier pliée
sont considérées comme le même objet.

2. Comparer les objets en quantifiant les déformations. Par exemple, un papier
plié 4 fois et un papier plat diffèrent par 4 plis.

Par rapport aux approches précédentes, l’analyse de forme ajuste la complexité du
problème en incorporant les connaissances d’experts dans la conception de l’ensemble
de déformations. Les déformations sont soigneusement sélectionnées pour tenir compte
des sources significatives de variabilité, en veillant à ce que les caractéristiques ou les
déformations invariantes aient une signification biologique.

Alors que l’analyse de forme se concentre principalement sur l’imagerie médicale pour
comparer des organes et des tissus soumis à des déformations spatiales, son application
aux séries temporelles (données spatiotemporelles) reste relativement inexplorée. Malgré
cela, les méthodes de séries temporelles s’appuyant sur la notion de forme ont démontré un
succès significatif dans des tâches telles que la classification et le clustering. Ces méthodes
s’appuient généralement sur des distances invariantes par rapport aux déformations
courantes des séries temporelles, telles que le changement d’amplitude, le décalage et la
reparamétrisation temporelle, comme illustré dans Figure 8.4.

Déformé
Original

(a) Amplitude (b) Décalage (c) Paramétrisation

Figure 8.4 Illustration sur un battement de coeur provenant d’un ECG des déformations
courantes des séries temporelles, y compris (a) le changement d’amplitude, (b) le décalage, et
(c) la reparamétrisation temporelle.

Positionnement de la thèse. Cette thèse a été menée au Centre Borelli1, un laboratoire
de recherche multidisciplinaire qui rassemble des experts de divers domaines, y compris les
mathématiques, l’informatique, les neurosciences, la biologie, la médecine et la pratique

1https://centreborelli.ens-paris-saclay.fr/en

https://centreborelli.ens-paris-saclay.fr/en
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clinique. Cette thèse vise à tirer parti de l’apprentissage automatique pour les séries
temporelles et de l’analyse de formes pour proposer des méthodes adaptées aux recherches
biomédicales nécessitant le traitement de données temporelles. Un intérêt particulier
est aussi mis sur l’interprétation visuelle des formes et des déformations, une approche
cruciale dans de nombreux cas.

Cas d’usage. Cette thèse est divisée en deux parties. La première partie se concentre sur
la recherche de motifs spécifiques ou la découverte de motifs récurrents dans une longue
série temporelle, indépendamment de certaines déformations prédéfinies. Conçues comme
des méthodes pratiques, elles sont testées sur plusieurs données temporelles biomédicales,
notamment les ECG et les EEG.

La deuxième partie se concentre sur les méthodes de représentation non supervisées de
séries temporelles s’appuyant sur la notion de forme. Le développement de ces méthodes
est motivé par un projet de recherche mené au Centre Borelli afin de mieux comprendre le
rôle d’une enzyme dans la régulation de la respiration [Ner+19]. Une description détaillée
de ce projet est fournie dans le Chapitre 4.

Située à l’intersection de l’apprentissage automatique pour les séries temporelles et
de l’analyse de forme, la section suivante donne un aperçu des deux communautés de
recherche et des fondements mathématiques nécessaires à l’application de l’analyse de
forme aux séries temporelles.

8.2 A la croisée des chemins

8.2.1 Apprentissage automatique pour les time series

Les séries temporelles sont abondantes. Les séries temporelles apparaissent dans de
nombreux domaines d’application et soulèvent divers défis. Parmi les nombreux exemples
en dehors du biomédical, les astronomes s’intéressent à la classification de milliards
d’objets astronomiques à partir de séries temporelles photométriques [JB20 ; Lin+12]. Les
sismologues cherchent à prédire les tremblements de terre à venir à partir de sismogrammes
en temps réel [BAM23]. Les économistes souhaitent détecter les manipulations frauduleuses
du marché à partir de séries chronologiques de transactions financières [KG22 ; GZ15]. Les
industriels souhaitent rationaliser leur chaîne d’approvisionnement en prévoyant les ventes
[RLM21], en contrôlant leur niveau de stock [Avi03], ou en effectuant une maintenance
préventive [RBP11].

Face à une telle diversité de contextes et de problèmes, la recherche en apprentissage
automatique pour les séries temporelles s’est organisée autour de tâches transversales
telles que la classification ou la prévision, ainsi que de critères d’évaluation des méthodes.

Des critères fondamentaux. Dans la littérature, les algorithmes sont généralement
évalués sur la base de trois critères qui englobent les difficultés rencontrées dans la plupart
des applications :
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• Efficacité : Pour traiter des ensembles de séries temporelles potentiellement volu-
mineux, les algorithmes doivent être efficaces à la fois en termes de temps de calcul
et d’utilisation de la mémoire.

• Interprétabilité : Motivés par des applications dans des domaines tels que l’in-
dustrie ou la médecine, où les décisions algorithmiques peuvent affecter la santé
et le bien-être des personnes, les algorithmes doivent présenter certaines garanties,
notamment en terme d’interprétabilité afin d’expliquer la décision algorithmique à
partir des données d’entrée.

• Performances : Pour motiver la création d’algorithmes performants dans de mul-
tiples domaines d’application, les chercheurs ont établi des mesures de performances
spécifiques à chacune des tâches [SR24 ; JPJ24 ; Tat+18] et ils ont aussi proposé
plusieurs jeux de données [Pap+22a ; God+21 ; Dau+19 ; Bag+18].

Les algorithmes proposés durant cette thèse seront évalués à la lumière de ces critères.

Des tâches transversales. Dans plusieurs applications, les mêmes tâches doivent être
effectuées, et de nombreux chercheurs dans le domaine des séries temporelles ont axé
leurs travaux autour de celles-ci [EA12b ; Fu11]. Dans ce qui suit, de brèves descriptions
des tâches les plus courantes sont données :

• Détection d’anomalies [SWP22] : Détection de parties anormales dans une
série temporelle. Le comportement normal/anormal peut être appris avec ou sans
supervision.

• Classification [Bag+17] : Prédiction de la classe de séries temporelles suite à
l’entraînement d’un algorithme à partir de sériés temporelles labélisées.

• Clustering [ASW15] : Regroupement de séries temporelles en ensembles homo-
gènes en fonction d’une mesure de similarité et sans supervision.

• Représentation [Li+17] : Réduire la dimension des séries temporelles dans le
temps ou dans l’espace pour gagner en performance et en efficacité sur les tâches en
aval.

• Prédiction [LZ21] : Prédire l’avenir à partir d’observations passées en s’appuyant
sur les propriétés statistiques du processus sous-jacent.

• Découverte de motifs [TL17] : Détection et localisation de motifs locaux qui se
répètent dans une série temporelle.

• Segmentation [TOV20] : Division d’une série temporelle en segments homogènes
à partir d’une mesure de similarité ou d’un entraînement.

• Recherche de similarité [Pat+02] : Recherche des occurrences de formes spéci-
fiques au sein d’une unique série temporelle d’un ensemble de séries temporelles.
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Dans cette thèse, des contributions ont été apportées à la recherche de similarités dans le
Chapitre 2, à la découverte de motifs dans le Chapitre 3, et à la représentation de séries
temporelles dans les Chapitres 5 et 6.

Deux échelles. La plupart des tâches liées aux séries temporelles s’effectuent sur à l’une
de deux échelles : locale ou globale. Certaines tâches, comme le clustering, se concentrent
sur l’échelle globale ; elles comparent des séries temporelles appartenant à un ensemble
de données. D’autres, comme la découverte de motifs, se concentrent sur l’échelle locale ;
elles recherchent des événements locaux dans une longue série temporelle unique. Dans
certaines situations, la tâche fait référence aux deux échelles. Par exemple, la détection
d’anomalies fait référence à la détection de séries temporelles anormales dans un ensemble
de données mais aussi à la détection d’événements anormaux locaux dans une série
temporelle. La Table 8.1 détaille l’échelle à laquelle chaque tâche opère.

En outre, il est possible de passer d’une tâche à l’échelle locale à une tâche à l’échelle
globale avec un algorithme de segmentation approprié. Par exemple, avec un algorithme
de segmentation des battements du coeur (Figure 8.2b), un ECG (Figure 8.1b) peut être
décomposé en un ensemble de battements de coeur qui peuvent être comparés à l’aide de
méthodes opérant à l’échelle globale.

Dans cette thèse, la Partie I se concentre sur les tâches à l’échelle locale, et la Partie
II se concentre sur les tâches à l’échelle globale.

Table 8.1 Echelle opérationnelle des tâches courantes sur les séries temporelles.

Tâche Locale Globale

Détection d’anomalies ✓ ✓

Classification ✓

Clustering ✓

Représentation ✓

Prédiction ✓

Découverte de motifs ✓

Segmentation ✓

Recherche de similarité ✓ ✓

La jungle des distances. La plupart des algorithmes qui traitent les tâches mention-
nées ci-dessus s’appuient sur des distances entre séries temporelles. Comme elles sont
facilement interchangeables, de nombreuses distances ont été proposées pour améliorer les
performances dans divers contextes. Face à la jungle des distances, plusieurs évaluations
expérimentales ont été menées au fil des annéess [HMB24 ; Pap+20 ; AML19 ; Din+08]. Par
exemple, une étude récente compare 71 distances sur 128 ensembles de données [Pap+20].
La majorité des distances se répartissent en deux familles :

• Distances à pas fixe : Elles comparent des séries temporelles de même longueur
et supposent un appariement bijectif entre les échantillons. Elles sont connues pour
leur efficacité en termes de calcul.
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• Distances élastiques : Elles peuvent comparer des séries temporelles de longueurs
différentes et, compte tenu de la distance entre les échantillons, elles trouvent
l’appariement optimal entre échantillons qui minimise la distance globale. Elles sont
connues pour leur robustesse face aux déformations de reparamétrisation temporelle.

Dans cette thèse, des contributions aux deux familles ont été faites et sont présentées
dans le Chapitre 2 pour les distances à pas fixe et Chapitre 6 pour les distances élastiques.

Les distances s’appuyant sur la notion de forme se distinguent. Parmi toutes les
distances, deux sont bien établies et considérées comme la distance de référence par de
nombreux algorithmes : la distance euclidienne Z-normalisée [GK95] et la distance nommée
"Dynamic Time Warping" (DTW) [SC78].Ces deux distances sont en fait des distances
qui s’appuient sur la forme. Plus précisément, elles comparent des séries temporelles
indépendamment de certaines déformations.

Appartenant à la famille des distances à pas fixe, la distance euclidienne Z-normalisée
est invariante aux changements d’amplitude et aux décalages, voir Figure 8.4ab. Bien qu’élé-
mentaires, ces déformations sont omniprésentes dans les séries temporelles et l’invariance
devient cruciale dans de nombreuses applications. La distance euclidienne Z-normalisée
x ∈ Rn et y ∈ Rn est définie par :

dZ(x,y) =

∥∥∥∥
x− µx1

σx
− y − µy1

σy

∥∥∥∥ , (8.1)

avec µx = 1
n

∑n
i=1 xi, σ

2
x = 1

n

∑n
i=1(xi − µx)

2 et 1 = (1, . . . , 1) ∈ Rn. Traitées comme des
échantillons gaussiens, la moyenne et l’écart-type sont retirés des échantillons de sorte
que la série temporelle devient invariante aux déformations de décalage et d’amplitude.
La distance Z-normalisée bénéficie d’un calcul efficace [ZM24] et elle a connu un grand
succès, en particulier dans la recherche de similarités et la découverte de motifs [ZM24 ;
Yeh+16].

Appartenant à la famille des distances élastiques, la DTW est invariante à une
source commune de variabilité interindividuelle : la paramétrisation temporelle de la série
temporelle, voir Figure 1.4c. Dans sa forme originale [SC78], la DTW entre x ∈ Rm et
y ∈ Rn est définie par :

dtw(x,y) = min
A∈Am,n

⟨A,∆⟩F , where : ∆ij = ∥xi − yj∥2 , (8.2)

avec Am,n ⊂ {0, 1}m×n étant l’ensemble des matrices de chemins qui relient le coin
supérieur gauche au coin inférieur droit [CB17].

De nombreuses variantes de la DTW ont été proposées au fil des ans, certaines visent
notamment à améliorer sa robustesse au bruit [ZI18 ; CB17]. Récemment, la DTW a été
combinée au transport optimal pour comparer des séries temporelles prenant valeur dans
des espaces hétérogènes afin d’aborder des questions d’adaptation de domaine tout en
garantissant l’invariance aux reparamétrisations temporelles [Pai+23 ; Coh+21 ; JCG20].
De même, un travail récent [Vay+20] a proposé une distance basée sur DTW également
invariante aux déformations globales appartenant aux variétés de Stiefel. Par exemple,
cette distance est bien adaptée à la comparaison de séries temporelles d’enregistrements
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de mouvements où l’angle de la caméra peut différer d’un enregistrement à l’autre. Il
convient de noter qu’il ne s’agit pas d’une métrique, car elle ne garantit pas l’inégalité
triangulaire, et que son temps de calcul est quadratique. Cependant, les distances fondées
sur la DTW sont performantes dans de nombreuses tâches sur des ensembles de séries
temporelles courtes [Wan+13].

Les distances s’appuyant sur la notion de forme ont connu un grand succès et consti-
tuent un premier choix pour de nombreuses applications. Cependant, la notion de forme
dans les séries temporelles n’a pas été entièrement explorée et des améliorations sont
encore possibles en s’inspirant de la littérature en analyse de formes.

8.2.2 Analyse de formes

Comparer des formes. L’analyse de forme fait référence aux méthodes qui comparent
des objets géométriques tels que des surfaces ou des courbes, en accordant une attention
particulière à la modélisation de la variabilité inter-objets. Comme l’illustre Figure 8.5, les
premières applications ont été faites en biologie [DM16], où les chercheurs s’intéressaient
aux différences anatomiques entre les espèces indépendamment d’une source de variabilité
modélisée par des dilatations, des translations ou des rotations. Une telle analyse est
connue sous le nom d’analyse de Procuste ordinaire [HC62].

Figure 8.5 A partir de [Kli15], les formes des ailes d’insectes sont comparées grâce à l’analyse de
Procrustes ordinaire. (a) les deux ailes sont mises à la même échelle, ce qui élimine la variabilité
de dilatation, (b) le barycentre des deux ailes est translaté vers l’origine, ce qui élimine la
variabilité de translation, et (c) l’aile bleue est orientée similairement à l’aile rouge, ce qui élimine
la variabilité de rotation. Enfin, la distance entre les ailes est la somme des distances euclidiennes
entre les points de repère.
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Vers des méthodes statistiques. Plus récemment, l’analyse de forme a été appliquée
dans des domaines tels que la vision par ordinateur [Wei18 ; WM18 ; You12], l’imagerie
médicale [Sto+24 ; Dub+18 ; Mor+08], ou l’anatomie computationnelle [Gas+22 ; MTY02 ;
GM98], où les méthodes statistiques jouent un rôle central dans le processus scientifique.
Par exemple, plusieurs études ont porté sur la relation entre la forme de l’hippocampe et
la maladie d’Alzheimer [Wen+20 ; Chu+09 ; Wan+07], et d’autres sur la relation entre la
forme du cœur et certains dysfonctionnements [Gua+24 ; Man+11 ; Hel+05].

Malheureusement, les méthodes statistiques classiques ne sont pas adaptées aux
espaces de forme, car ceux-ci ne sont généralement pas dotés d’une structure vectorielle.
Par exemple, la somme pixellisée de deux IRM cérébrales ne donne pas une IRM cérébrale.
Le développement de méthodes statistiques dédiées aux espaces de forme est devenu un
sujet de recherche actif au cours des deux dernières décennies [Fey20].

Métrique sur un espace de formes. S’il est difficile de définir une structure vectorielle
appropriée sur un espace de formes, il est plus facile de quantifier la différence entre les
formes. Un grand nombre de travaux se sont concentrés sur la définition d’une structure
métrique sur les espaces de forme qui sont évalués autour de trois critères :

• Pertinence pour le domaine d’application : englobe les sources de variabilité
en fonction de leur effet sur les formes.

• Fondement mathématique : Hérite de propriétés mathématiques pertinentes
pour les méthodes en aval, notamment les méthodes statistiques.

• Efficacité informatique : Adaptable à de grands ensembles de données.

Déformation et action de groupe. Une approche conceptuelle pour définir une métrique
sur l’espace des formes a été introduite [Gre94]. Plus précisément, les sources de variabilité
sont modélisées comme des déformations de l’espace ambiant auquel appartiennent les
objets géométriques. L’ensemble des déformations est doté d’une structure de groupe et
son action sur les objets géométriques est décrite par une action de groupe.

Définition 1 (Action de groupe). Un groupe G de neutre e agit part la gauche sur
l’ensemble M, s’il existe une fonction a : G×M 7→ M qui vérifie :

1) a(e,m) = m, ∀m ∈ M

2) a(g, a(h,m)) = a(gh,m), ∀(g, h) ∈ G2, ∀m ∈ M.

Remarque 1. L’action à droite peut également être définie ; il suffit de remplacer la
deuxième propriété par a(g, a(h,m)) = a(hg,m). Pour simplifier les notations, les actions
gauches (resp. droites) sont notées g ×m 7→ g ·m (resp. g ×m 7→ m · g).

Pour un groupe G qui agit à gauche sur un ensemble M, l’orbite d’un élément m ∈ M
est l’ensemble [m] = {g ·m | g ∈ G}. L’action de G sur M est dite transitive si pour tout
m ∈ M son orbite est l’ensemble entier : [m] = M. Différentes stratégies de définition de
métriques doivent être envisagées selon que la propriété de transitivité s’applique ou non.
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Action non transitive. Pour les actions non transitives, les métriques sont conçues
pour comparer les formes indépendamment de l’ensemble des déformations. Formellement,
l’ensemble des orbites indépendantes, noté M/G, appelé espace quotient, n’est pas réduit
à un singleton. Chaque orbite représente une forme, et l’espace quotient M/G doit être
doté d’une structure métrique.

Théorème 1. Soit (M, d) un espace métrique et G un groupe qui agit non transitivement
sur la gauche sur M. La fonction d̃ définie par :

d̃([m], [m′]) = inf
(g,g′)∈G2

d(g ·m, g′ ·m′)

est une métrique sur M/G, si les orbits sont des fermés de M pur la topologie induite par
d.

De plus, si d est G-équivariante, ie d(g ·m, g ·m′) = d(m,m′), d̃ vérifie aussi :

d̃([m], [m′]) = inf
g∈G

d(m, g ·m′)

Démonstration. Voir chapitre 12 du livre Shapes and diffeomorphisms, [You10].

Exemple 1 (Invariance aux rotations et translations). Une distance invariante aux
rotations et translations est une application directe du Théorème 1.

Formellement, supposons deux ensembles de repères appariés x = (x1, . . . ,xN ) et
y = (y1, . . . ,yN ) vivant dans l’espace ambiant Rd. Les objets x et y appartiennent à la
même orbite s’il existe une rotation R ∈ SO(d) et une translation τ ∈ Rd telle que :

y = Rx+ τ i.e. ∀i ∈ [[1, N ]], yi = Rxi + τ. (8.3)

Si x et y ne sont pas ramenés à un seul point, par équivariance de translation et de
rotation de la distance euclidienne, la distance invariante est définie comme suit :

dRT (x,y) = inf
(R1,τ1,R2,τ2)

∥(R1x+ τ1)− (R2y + τ2)∥ = inf
(R,τ)
∥(Rx+ τ)− y∥ (8.4)

Exemple 2 (Invariance aux paramétrisations temporelles : le cadre Square Root Velocity
(SRV)). Issu de l’analyse des formes, le cadre Square Root Velocity [Sri+10] vise à
comparer les courbes indépendamment de leur paramétrage temporel. Il propose une
distance invariante à la paramétrisation temporelle construite à travers la stratégie du
Théorème 1.

Formellement, prenons M ⊂ L2([0, 1],Rd) comme l’ensemble des courbes ouvertes
intégrables qui sont différentiables, avec une dérivée première également intégrable, et
telles que pour tout c ∈ M, c(0) = 0. Le but est de définir une distance entre les courbes
qui soit invariante par rapport à l’action du groupe G = {γ ∈ C1([0, 1], [0, 1]) | γ(0) =
0, γ(1) = 1, γ′(t) > 0 ∀t}.

Pour ce faire, considérons la fonction de représentation bijective F telle que pour toute
courbe c ∈ M, F (c) est la courbe définie comme :

F (c) : t 7→
{

c′(t)/
√
∥c′(t)∥, if c′(t) ̸= 0

0, else
, (8.5)
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et la distance d sur M :

d : (c1, c2) ∈ M×M 7→
∫ 1

0
∥F (c1)(t)− F (c2)(t)∥2dt , (8.6)

la distance d est G-équivariante, ce qui signifie que pour toutes courbes c1, c2 and paramé-
trisation temporelle γ, d(c1 ◦ γ, c2 ◦ γ) = d(c1, c2). D’après le Théorème 1, la fonction :

d̃ : ([c1], [c2]) ∈ M/G×M/G 7→ inf
γ∈G

∫ 1

0
∥F (c1 ◦ γ)(t)− F (c2)(t)∥2dt , (8.7)

est une pseudo-distance qui compare les courbes jusqu’à leur paramétrage temporel, et avec
quelques considérations techniques [Sri+10], elle définit une distance sur M/G.

Action transitive. Avec une action transitive, il est toujours possible de trouver une
déformation qui fait correspondre un objet géométrique à un autre. La déformation
déforme l’espace ambiant du premier objet pour le faire correspondre au second. L’intérêt
de l’action transitive réside dans la possibilité de décrire la transformation d’un objet
en un autre à une échelle globale et locale et pour tout point de l’espace ambiant.
Malheureusement, la stratégie décrite dans le cas non transitif n’est pas transférable
au cas présent. Cependant, la définition d’une distance sur l’espace des formes M est
toujours possible si le groupe G peut être doté d’une structure métrique. Intuitivement,
les distances définies par le théorème suivant quantifient « combien » l’objet source doit
être déformé pour être mis en correspondance avec l’objet cible.

Théorème 2. Soit (G, e) un groupe munit d’un métrique dG et qui agit transitivement à
gauche sur l’ensemble M. Si dG est une métrique droite-équivariante sur G, ie dG(gh, g

′h) =
dG(g, g

′), alors d̃ définie par :

d̃(m,m′) = inf
g∈G
{dG(e, g) | g ·m = m′}

est une métrique sur M si {g ∈ G | g ·m0 = m0} est fermé pour la topology induite par
dG et pour un élément fixé m0 ∈ M.

Démonstration. Voir chapitre 12 du livre Shapes and diffeomorphisms, [You10].

Enraciné dans les travaux du biomathématicien D’Arcy Thompson [Tho17] qui a décrit
pour la première fois le passage d’une espèce à une autre par le biais d’une déformation
géométrique, voir Figure 8.6a, le groupe des difféomorphismes a fait l’objet d’une attention
particulière dans l’analyse des formes pour les actions transitives. Intuitivement, les
difféomorphismes sont des applications bijectives qui, elle-même et son inverse, sont
différentiables et de différentielles continue. Ces déformations peuvent être générées par
des équations différentielles ordinaires, ce qui rend les distances induites par ce groupe
pertinentes pour toute application biomédicale dans laquelle la déformation d’une forme
évolue de manière régulière dans le temps. Par exemple, le cerveau d’un enfant se forme
progressivement pendant la grossesse, voir Figure 8.6b, et l’évolution de la forme du
cerveau peut être comparée au niveau d’une population dans l’objectif de fournir des
informations précieuses aux cliniciens et des conseils aux parents [GBA21].
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(a) De [Tho17], correspondance par défor-
mation entre poissons.

(b) De [KF09], développement du cerveau
de l’enfant durant la grossesse.

Figure 8.6 (a) Le poisson dans le coin supérieur gauche est déformé pour représenter d’autres
poissons. L’hypothèse sous-jacente de D’Arcy Thompson est que les déformations entre espèces
étroitement apparentées doivent être « faibles ». (b) Description schématique du développement
du cerveau d’un enfant pendant la grossesse. L’absence de développement de certaines parties du
cerveau de l’enfant pendant la grossesse peut entraîner des dysfonctionnements cognitifs. Il est
essentiel pour les cliniciens de détecter ces anomalies et de les différencier d’éventuels retards de
développement [GBA21].

Les séries temporelles ne sont pas des courbes. Les séries temporelles et les courbes
réfèrent au même objet mathématique : une application d’un intervalle fermé I ⊂ R
prenant une valeur dans un espace E. Cependant, leur différence vient des défis soulevés
par les divers champs d’application qui sont traités par deux communautés différentes.

Les courbes sont souvent issues d’applications en vision par ordinateur ou en imagerie
médicale où elles font fréquemment référence à des objets détourés, voir Figure 8.7a. Ce
type de courbes a été largement étudié dans l’analyse des formes [Bau+21 ; You10]. Ici,
l’aspect temporel des courbes se réfère simplement à la paramétrisation de l’objet détouré
et n’apporte aucune information significative. Par conséquent, toutes les courbes sont
définies sur un même intervalle fermé I, et l’accent est mis sur la comparaison de la forme
des courbes indépendamment de toute paramétrisation temporelle.

Pour opposer les séries temporelles aux courbes, prenons un exemple pratique. La
bradycardie est une maladie dans laquelle les sujets ont un rythme cardiaque anormalement
bas, ce qui entraîne un manque d’oxygène. La différence entre les sujets sains et les sujets
malades peut être observée sur les électrocardiogrammes (ECG), voir Figure 8.7b. Par
rapport aux sujets sains, le cycle cardiaque des sujets souffrant de bradycardie présente
une longue pause à la fin de la contraction du coeur. Il est surprenant de constater
que les cycles des patients sains et malades sont identiques lorsqu’ils sont comparés
indépendamment de toute paramétrisation temporelle. L’information discriminante réside
dans la paramétrisation temporelle du cycle cardiaque, qui devrait être incluse dans la
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notion de forme des séries temporelles.
L’exemple précédent montre qu’une application directe des méthodes conçues pour

les courbes aux séries temporelles est restrictive dans certaines situations. D’autre part,
l’important et fructueux corpus de travaux autour de la notion de forme doit être ajouté
à la communauté des séries temporelles. Cette remarque motive le positionnement de
cette thèse pour étendre une certaine notion d’analyse de forme au contexte des séries
temporelles.

(a) De [Bha+18], IRM du cerveau. (b) ECG du site internet de Cleveland clinic.

Figure 8.7 (a) Courbes représentant des tumeurs cérébrales détourées à partir d’IRMs. (b)
Différence d’électrocardiogramme (ECG) entre un sujet sain et un sujet souffrant de bradycardie,
une maladie où le coeur a une vitesse de contraction lente. Alors que les contractions du coeur
sont identiques, les cycles des battements cardiaques présentent de longues pauses après la
contraction en cas de bradycardie. À l’échelle des cycles cardiaques individuels, les méthodes
de comparaison des courbes indépendamment de la paramétrisation temporelle ne permettront
pas de différencier les sujets sains des sujets souffrant de bradycardie. Extrait du site internet :
https://my.clevelandclinic.org/health/diseases/17841-bradycardia.

8.2.3 Un cadre général pour l’analyse des formes des séries temporelles

D’après la section précédente, trois choses doivent être définies pour établir une notion
de forme : un ensemble d’objets géométriques, un groupe de déformations et l’action du
groupe sur l’ensemble. Les paragraphes suivants présentent, de la manière la plus générique
possible, ces ensembles et l’action de groupes dans le contexte des séries temporelles. La
définition de métriques s’appuyant sur la notion de forme sera au centre des prochains
chapitres où le cadre générique sera décliné à des cas plus spécifiques.

Représentation de séries temporelles. Dans la littérature [Bau+21 ; Wil17], les séries
temporelles sont généralement représentées de deux manières :

• La représentation fonctionnelle : Une série temporelle est une fonction f d’un
interval fermé I ⊂ R à valeur dans Rd.

• La représentation discrète : Une série temporelle est une séquence (f(t1), . . . , f(tn))
∈ Rn×d échantillonnée aux temps t1 < . . . < tn ∈ I.

Alors que la représentation fonctionnelle d’une série temporelle est exacte, sa contre-
partie discrète est une approximation dont l’erreur dépend de l’échantillonnage. En ce qui

https://my.clevelandclinic.org/health/diseases/17841-bradycardia
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concerne l’analyse de forme, la représentation fonctionnelle des séries temporelles est plus
attrayante pour le mathématicien car elle est exacte et évite les problèmes liés à l’échan-
tillonnage. Cependant, dans la pratique, nous n’avons accès qu’à des représentations de
séries temporelles discrètes. Cela motive le besoin de passerelles entre les représentations
fonctionnelles et discrètes afin de combler le fossé entre la théorie et les applications.

Cette thèse s’intéressera principalement à la représentation fonctionnelle pour définir
des distances basées sur la forme entre les séries temporelles. En outre, des efforts seront
faits pour décliner ces distances au cas discret et pour fournir des garanties de convergence
vers la distance exacte au fur et à mesure que la discrétisation s’affine.

Ensembles de séries temporelles admissibles. Par rapport à l’ensemble des courbes
qui correspondent à toutes les fonctions continues sur le même intervalle fermé I ⊂ R
à valeur dans Rd, l’ensemble admissible des séries temporelles diffère de deux façons.
L’hypothèse de continuité doit être révoquée car elle n’est pas valable dans plusieurs
domaines d’application. Par exemple, la consommation électrique des appareils se comporte
souvent comme un signal binaire.

Plus important encore, la restriction consistant à définir les fonctions sur le même
intervalle fermé I doit également être supprimée. En effet, pour revenir à l’exemple de
la bradycardie, lorsque l’on compare des cycles cardiaques, l’information discriminante
réside dans la paramétrisation temporelle et en particulier dans la longueur de l’intervalle
sur lequel la fonction est définie.

L’ensemble des séries temporelles admissibles doit englober ces différences et peut
être défini au sens le plus général comme l’union suivante :

F = {(I, f) | I ∈ I and f ∈ M(I,Rd)} , (8.8)

où I est l’ensemble des intervalles fermés de R et M(I,Rd) est l’ensemble des fonctions
Borel mesurables de I dans Rd. On notera que ce vaste ensemble englobe la plupart des
séries temporelles rencontrées dans les applications. Cependant, cet ensemble est peu
structuré et les prochains chapitres se concentreront sur des sous-ensembles qui présentent
plus de structure afin de faciliter la définition des métriques.

Action de groupe admissible pour les séries temporelles. Les actions de groupe
ont été introduites en analyse des formes pour modéliser l’action d’une déformation sur un
objet géométrique. Si l’on considère une série temporelle f : I 7→ Rd, une déformation qui
aurait un sens est une combinaison d’une distorsion h : I 7→ Rd et d’une paramétrisation
temporelle γ : I 7→ J qui conduirait à la série temporelle déformée : g = (f + h) ◦ γ−1.

Pour correctement définir une action de groupe sur l’ensemble admissible des séries
temporelles F, modélisons les distorsions par l’ensemble des fonctions Borel mesurables
M(R,Rd) et la paramétrisation temporelle par l’ensemble des homéomorphismes stric-
tement croissants H+(R). L’ensemble M(R,Rd)⋊ H+(R) avec la règle de composition :
(h2, γ2)⋊ (h1, γ1) = (h1+h2 ◦ γ1, γ2 ◦ γ1) forme un groupe qui peut agir sur F par l’action
à gauche :

(h, γ) · (I, f) =
(
γ(I), (f + h) ◦ γ−1

)
. (8.9)
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Notons que cette action est transitive, ce qui signifie que pour toute série temporelle
admissible (I, f) et (J, g), il existe une déformation (h, γ) telle que (h, γ) · (I, f) = (J, g).
Plus encore, il existe une multitude de déformations qui font correspondre (I, f) à (J, g)
car pour toute paramétrisation temporelle γ, la distorsion dont la restriction sur I est égale
à g ◦ γ − f assure la correspondance. En résumé, cette action sur les séries temporelles est
très expressive et offre de nombreuses façons de modéliser des déformations pertinentes
pour les cas d’applications.

En termes de notations, le groupe M(R,Rd) seul réfère aux déformations rigides,
tandis que les groupes H+(R) et M(R,Rd)⋊H+(R) réfèrent aux déformations élastiques.

Pour revenir à la littérature en analyse des formes, l’action du groupe admissible
relève de la notion des formes fonctionnelles [CCT17 ; CT14], un problème émergent en
anatomie computationnelle [MQ09].

Simplification par cas d’usage. La simplification de l’action de groupe admissible
se fait au prix d’une restriction de l’ensemble des séries temporelles et des déformations
pour un gain de structure supplémentaire ce qui permet de définir des métriques sur des
espaces de formes. En fonction de l’application, les simplifications peuvent être effectuées
selon deux stratégies :

• Invariance à un ensemble de déformations : L’objectif est de comparer des
séries temporelles indépendamment de certaines déformations telles que l’amplitude,
le décalage, la paramétrisation temporelle, etc. La simplification de l’action de
groupe conduit à une action non transitive qui, selon le théorème 1, conduit à
une métrique invariante par rapport aux déformations, à condition que l’ensemble
des séries temporelles puisse être doté d’une métrique équivariante par rapport au
groupe de déformations. De telles métriques seront étudiées dans le Chapitre 2. Il
sera notamment démontré que ce cadre inclut la distance euclidienne Z-normalisée
(Equation 8.1) ainsi que d’autres distances intéressantes.

• Quantification de déformations significatives : L’objectif est de comparer des
séries temporelles par la déformation qui fait correspondre une série temporelle à
une autre. Le groupe de déformations est choisi pour donner un sens à l’application,
et l’action de groupe qui en résulte satisfait la propriété de transitivité. Selon le
théorème 2, une métrique liée à la déformation entre les séries temporelles peut être
établie si le groupe de déformations peut être doté d’une métrique équivariante à
lui-même. Cette stratégie sera explorée dans le Chapitre 6 en ajustant des méthodes
bien établies de l’analyse de formes au cas des séries temporelles.

Conclusion. Les paragraphes précédents présentent un cadre général pour l’analyse de
formes appliquée au cas des séries temporelles, notamment en tirant parti d’une action
de groupe suffisamment expressive. En ce qui concerne son application à différents cas
d’usage, deux stratégies ont été présentées pour créer des métriques fondées sur la notion
de forme en séries temporelles. Ce cadre constitue les fondations sur lesquelles cette thèse
est menée.
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8.3 Déroulé de la thèse

La thèse est organisée comme suit :

La première partie se concentre sur la recherche de formes spécifiques ou la décou-
verte de motifs récurrents dans une longue série temporelle, indépendamment de certaines
déformations prédéfinies. Elle traite spécifiquement des tâches à échelle locale sur une
unique série temporelle, comprenant la recherche de similarités et la découverte de motifs.
De même, elle aborde l’invariance par rapport à des groupes prédéfinis de déformations
rigides.

• Chapitre 2 aborde le problème de la recherche d’occurrences (répétitions) de formes
prédéfinies dans une longue série temporelle. La première section passe en revue les
travaux relatifs à la recherche de similarités dans des séries temporelles, en mettant
particulièrement l’accent sur les méthodes exactes qui utilisent des distances à pas
fixé. Les propriétés algorithmiques contribuant à leur efficacité sont détaillées. En
s’appuyant sur ces propriétés, la deuxième section introduit un cadre général pour la
construction de distances invariantes par rapport à des ensembles de déformations
définis par l’utilisateur, tout en garantissant une complexité de temps de calcul
équivalente à celle des méthodes les plus efficaces. La dernière section applique
ce cadre pour développer une distance invariante au changement d’amplitude, au
décalage et à la tendance linéaire. Cette distance s’avère précieuse dans les cas où
les séries temporelles sont affectées par des déformations induites par une tendance,
comme démontré expérimentalement.

• Chapitre 3 présente un nouvel algorithme pour la découverte de motifs. Après
une revue complète de la littérature en découverte de motifs, la deuxième section
présente l’algorithme proposé, appelé PEPA, qui permet de découvrir des motifs de
longueur variable. Cet algorithme transforme une série temporelle en un graphe et
utilise l’homologie persistante pour résumer le graphe en un diagramme. Les motifs
sont ensuite identifiés par une interprétation visuelle du diagramme. Bien que PEPA
demande à l’utilisateur de spécifier le nombre de motifs à découvrir, une version
adaptative, A-PEPA, utilisant une simple heuristique pour déduire ce nombre est
également introduite. La section suivante évalue les performances des algorithmes
sur des bases de données labéllisées agrégées au cours de cette thèse et des études de
sensibilités sont menées. Une application web est présentée dans la dernière section,
elle démontre comment l’efficacité de l’algorithme et l’interprétation visuelle du
diagramme peuvent être combinées pour permettre une découverte interactive de
motifs.

La seconde partie se concentre sur les méthodes de représentation non supervisées
de séries temporelles s’appuyant sur la notion de forme. Plus précisément, cette tâche, qui
agit à l’échelle globale, est abordée en considérant des groupes de déformations élastiques
pouvant être restreints ou bien quantifiés.

• Chapitre 4 présente l’application biomédicale qui a motivé le développement
des méthodes proposées dans les chapitres suivants. En bref, une enzyme joue un
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rôle important dans la régulation de l’activité musculaire et de la transmission des
signaux au sein du système nerveux. Certains médicaments inhibent l’action de cette
enzyme pouvant engendrer des conséquences graves, notamment sur la respiration,
et qui ne sont pas encore totalement comprises. Pour étudier les conséquences
de l’inhibition, la respiration de souris de différents génotypes est mesurée par
pléthysmographie une fois les souris exposées à des inhibiteurs. La première section
présente les outils de mesure (pléthysmogramme) et souligne les limites des méthodes
existantes pour l’analyse de ces signaux. En outre, un algorithme permettant de
segmenter les signaux de pléthysmographie en ensembles de données de cycles
respiratoires (inspiration et expiration) est présenté. La deuxième section décrit le
contexte biologique et le protocole expérimental.

• Chapitre 5 présente, dans la première section, une nouvelle méthode non supervisée
de référence pour l’analyse des signaux de pléthysmographie. Cette méthode utilise
un algorithme de clustering combiné à la distance DTW pour apprendre une
représentation symbolique des cycles respiratoires. La symbolisation des signaux
de pléthysmographie se traduit par des séquences de symboles faisant référence
à des formes caractéristiques. Les résultats et la discussion qui suivent illustrent
en particulier l’interprétabilité de la méthode en présentant des correspondances
entre les symboles et les fonctions physiologiques. Parmi plusieurs découvertes,
les représentations symboliques ont mis en évidence des modalités respiratoires
dépendantes du génotype et une réponse physiologique hétérogène suite à l’exposition
aux inhibiteurs.

• Chapitre 6 présente une méthode, appelée TS-LDDMM, qui représente une série
temporelle par le vecteur paramétrant la déformation qui met en correspondance
une série temporelle de référence avec la série temporelle observée. Cette méthode
s’appuie sur le cadre "Large Deformation Diffeomorphic Metric Mapping" (LDDMM)
qui est issu de l’analyse de formes et présenté dans la première section. LDDMM
apprend des déformations difféomorphiques en résolvant des équations différentielles
spécifiques. La deuxième section adapte le cadre LDDMM aux séries temporelles
en établissant des conditions suffisantes sur le système différentiel pour garantir
que les déformations apprises préservent la structure spatio-temporelle des séries
temporelles. Par souci de concision, les études de performances et de sensibilités
de l’algorithme proposées sont incluses en annexe. Dans ce chapitre, la section
expérimentale se concentre sur l’étude de la ventilation chez la souris. Cette section
démontre comment les représentations TS-LDDMM capturent des déformations
physiologiquement significatives dont l’interprétabilité est accrue en analysant les
résultats statistiques associés. Plus précisément, les représentations TS-LDDMM
ont permis de caractériser les génotypes des souris, les modalités de ventilation et
les effets de l’exposition aux inhibiteurs.

8.4 Contributions

Chapitre 2 :
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1. Un cadre général est présenté pour construire des distances invariantes par rapport à
des déformations rigides spécifiques et qui peuvent être intégrées dans les algorithmes
de recherche de similarité les plus récents sans en compromettre l’efficacité. Plus
précisément, lorsque les sources de variabilité peuvent être modélisées comme un
groupe de déformations agissant sur les séries temporelles en tant que sous-espace
vectoriel, il est possible de créer une représentation des séries temporelles invariante
par rapport à la déformation, où la distance entre les représentants est simplement
la distance euclidienne. Ce cadre étend la célèbre distance euclidienne Z-normalisée.

2. Pour illustrer cette extension, la distance euclidienne LT-normalisée, invariante au
changement d’amplitude, au décalage et à la tendance linéaire, est présentée. Cette
distance est localement robuste aux déformations causées par une tendance et elle a
fait ses preuves dans plusieurs cas d’utilisation biomédicale.

Chapitre 3 :

1. Ce chapitre présente un algorithme appelé PersistentPattern (PEPA) qui permet
de découvrir des motifs de longueur variable sans avoir besoin d’une connaissance
préalable de la similarité entre les occurrences des motifs. PEPA fonctionne en
transformant une série temporelle en un graphe et en la représentant à l’aide de
l’homologie persistante, un outil d’analyse topologique des données. Les motifs
pertinents sont ensuite identifiés à partir du résumé du graphe.

2. Une version adaptative de l’algorithme qui déduit le nombre de motifs à découvrir
à partir du résumé du graphe est également présentée.

3. Un benchmark de 9 jeux de données labélisées, dont 6 jeux de données issus de
cas réels, est introduit pour la découverte de motifs. Les évaluations empiriques
montrent que PEPA surpasse de manière significative les algorithmes existants.

Chapitre 4 :

1. Ce chapitre présente un nouvel algorithme permettant de segmenter les cycles respira-
toires des souris (inspiration et expiration) à partir des signaux de pléthysmographie.
En intégrant des contraintes physiologiques, la méthode détecte avec précision le
début de l’inspiration et de l’expiration, offrant une plus grande robustesse aux
variations respiratoires par rapport aux approches précédentes.

Chapitre 5 :

1. Ce chapitre présente une méthode de référence qui compare les cycles respiratoires
à l’aide d’un algorithme de clustering combiné à la distance DTW. Cet algorithme
donne une représentation symbolique des cycles respiratoires s’appuyant sur la notion
de forme et où chaque symbole représente un groupe. Le suivi de ces symboles dans
le temps aboutit à une représentation symbolique des signaux de pléthysmographie.

2. Cette approche facilite la découverte de diverses modalités de ventilation qui ne
sont pas prises en compte par les descripteurs conventionnels. La représentation
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symbolique permet notamment d’identifier les adaptations spécifiques au génotype
en cas de déficience enzymatique et révèle diverses réponses à l’exposition aux
inhibiteurs.

Chapitre 6 :

1. Section 6.3 décrit une classe de déformations préservant la structure de graphe des
séries temporelles tout en garantissant une action transitive (théorème 3). Le lemme
1 décrit des espaces de Hilbert à noyau reproductible appropriés pour coder ces
déformations.

2. Annexe B.5 démontre l’identifiabilité du modèle en estimant le véritable paramètre
générateur des données synthétiques, et illustre la sensibilité de la méthode en ce
qui concerne ses hyperparamètres.

3. Annexe B.6 et B.7 illustrent l’intérêt quantitatif des représentations TS-LDDMM
pour les tâches de classification sur différents ensembles de séries temporelles avec
un échantillonnage régulier ou irrégulier.

4. Section 6.5.2 montre l’interprétabilité des représentations TS-LDDMM sur l’analyse
de la ventilation des souris.
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Appendix A

Local scale tasks & rigid deformations appendix

A.1 Datasets

The benchmark is composed of 10 datasets: 6 real-world datasets and 4 synthetic datasets
of increasing order of complexity for the task of similarity search and motif discovery.
Table A.1 presents the main features of the datasets.

Real-world datasets. We have considered the following real-world datasets:

(R-1) mitdb-1 [Gol+00; MM01]: The MIT-BIH Arrhythmia Database contains 48 half-
hour recordings of two-channel ambulatory electrocardiograms (ECGs) sampled at
360Hz. Cardiologists annotated the heartbeats according to 19 categories1. We
divided all recordings into time series of 1 minute and kept the first channel. We
selected time series of healthy subjects (id: 100, 101, 103, 117, 122, according to
[Sac+22]) that contains only normal heartbeats, and randomly selected 100 time
series.

(R-2) mitdb-2: We randomly selected 100 one-minute time series in from MIT-BIH
dataset. This dataset is more challenging than the previous one as it contains
unhealthy heartbeats. Each time series has 1 to 4 patterns, each with several
occurrences.

(R-3) mitdb800 [GPM90]: This database includes 78 half-hour ECG recordings sampled
at 120Hz with heartbeat annotations (19 categories). We divide all recordings into
three-minute time series and keep the first channel. We randomly select 100 time
series, and the number of repeated patterns varied between 1 and 4.

(R-4) ptt-ppg [Meh+22]: Pule-Transit-Time PPG dataset consists of time series recorded
with multiple sensors (sampled at 500Hz) from healthy subjects performing physical
activities. Heartbeats are also annotated. We randomly select a hundred 40-second
long signals from the photoplethysmogram (PPG) first channel during the “run”
activity.

1https://archive.physionet.org/physiobank/annotations.shtml
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(R-5) refit [MSS17]: The original dataset provides aggregate and individual appliance
load curves at 8-second sampling intervals from 20 houses in the United Kingdom,
recorded over two years. We selected 10 houses and aggregated recordings of the
appliances available: dishwasher, food mixer, washing machine, and tumble dryer.
The recordings were down-sampled to 32-second intervals and divided into time
series of one week. We kept 10 time series for each house in which the appliances
were not used simultaneously. This resulted in a dataset of 100 univariate time
series with a maximum of 3 motif sets.

(R-6) arm-coda [Com+24] is a dataset of 240 multivariate time series collected using 34
Cartesian Optoelectronic Dynamic Anthropometers (CODA) placed on the upper
limbs of 16 healthy subjects, each of whom performed 15 predefined movements such
as raising their arms or combing their hair. Each sensor records its position in 3D
space. To construct the dataset, we kept the left (resp. right) forearm sensor of id 29
(resp. 20) and 5 of the predefined movements: 0,1,4,6,8 (resp. 0,1,4,5,7). We selected
the first two occurrences of all movements in the x and y dimensions. Then, the
occurrences of the 5 movements were randomly placed along the time axis for each
subject, sensor, and dimension. The distance between two consecutive occurrences
is sampled uniformly over [50, 450]. A Gaussian noise with a signal-to-noise ratio of
0.01 was added to all time series. This resulted in a dataset of 64 univariate time
series.

Synthetic datasets. We have generated datasets based on four scenarios of increasing
complexity:

(S-1) pair: There is 1 pattern of length 100 that repeats twice.

(S-2) single: There is 1 pattern of length 100 that repeats 50 times.

(S-3) fixed: There are 5 patterns of length 100. For each pattern, the number of
occurrences is sampled uniformly between 2 and 10.

(S-4) variable: There are 5 patterns with length uniformly sampled between 100 and
200. For each pattern, the number of occurrences is sampled uniformly between 2
and 10.

All time series are generated using the same protocol: occurrences of the N repeated
patterns are randomly placed on top of a random walk, and Gaussian noise is added to
the resulting time series. For the motif pair dataset, we generated 200 time series for each
random walk variance step between 0 and 0.5 by steps of 0.01, and the interval between
the occurrences is uniformly sampled over [100, 900]. For other scenarios, the amplitude
of the random walk (resp. Gaussian noise) is set to 0.2 (resp. 0.1). The interval between
two consecutive occurrences is also uniformly sampled over [10, 90] for the single/fixed
scenarios and [20, 180] for the variable-length scenario. In all cases, given a length of
l0 ∈ N∗ and a fundamental frequency of 4Hz, a pattern is generated as the sum of the
sine function of the l0 first harmonics, with the phases and the amplitudes are uniformly
sampled over [−π, π] and [−1, 1].
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Table A.1 N number of repeated patterns, if < k, there are at most k patterns. µl average
pattern length, σl standard deviation of pattern length, min/max minimum/maximum pattern
length, n time series length, # number of time series.

Type Name N µl σl min/max n #

real (R-1) mitdb-1 1 320 60 215/461 20k 100
(R-2) mitdb-2 < 4 280 70 69/496 20k 100
(R-3) mitdb800 < 4 95 25 24/165 20k 100
(R-4) ptt-ppg 1 325 45 201/461 20k 100
(R-5) refit < 3 100 20 47/143 20k 100
(R-6) arm-coda 5 525 105 272/886 8k 64

synthetic (S-1) pair 1 100 0 100/100 1k 100
(S-2) single 1 100 0 100/100 8k 100
(S-3) fixed 5 100 0 100/100 3k 100
(S-4) variable 5 150 30 100/200 4k 100

A.2 Metrics: Precision, Recall and F1-score for motif discovery in time
series

Motif discovery in time series is an unsupervised event detection task. Like other time
series event-based tasks, we evaluate performance with precision, recall, and f1-score
metrics [Tat+18]. However, compared to supervised tasks, the computation of these
metrics requires the additional step of pairing real and predicted motif sets. In what
follows, we propose a resolution of the motif sets assignment problem and detail the
metrics’ computation.

A.2.1 Motif sets assignment problem

Pairing real and predicted motifs sets is a two-level assignment problem: predicted motif
sets must be assigned to real motif sets, and predicted occurrences must be assigned
to real ones between paired motif sets. We compute all pairings simultaneously by
maximizing the total overlapping between real and predicted motif sets. Technically,
let R = (Ri)1≤i≤|R| the real motif sets such that Ri = (Rs

i,u, R
e
i,u)1≤u≤|Ri| is the list of

starting and ending sample location of occurrences of the ith motif. Likewise, we define
the predicted motif sets ((P s

j,v, P
e
j,v)1≤v≤|Pj |)1≤j≤|P | and ΣN the permutation group of

the sequence (1, . . . , N). Note that we do not enforce the number of motif sets and
occurrences to be identical between real and predicted labels. The total overlapping
between real and predicted motif sets is defined by:

total-overlapping(R,P ) = max
(σ,σ′)∈Σ|R|×Σ|P |

min(|R|,|P |)∑

i=1

C(Rσ(i), Pσ′(i)) (A.1)
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where:

C(Ri, Pj) = max
(π,π′)∈Σ|Ri|×Σ|Pj |

min(|Ri|,|Pj |)∑

u=1

overlap(Ri,π(u), Pj,π′(u)) (A.2)

and:
overlap(Ri,u, Pj,v) = max(min(Re

i,u, P
e
j,v)−max(Rs

i,u, P
s
j,v), 0) (A.3)

Optimal pairings, (σ, σ′) ∈ Σ|R| × Σ|P | and
{
(πi,j , π

′
i,j) |∃u s.t (i, j) = (σ(u), σ′(u)), πi,j ∈ Σ|Ri|, π′

i,j ∈ Σ|Pi|
}

,

can be efficiently retrieved with the the Hungarian matching algorithm [Kuh55; Sar+21].

A.2.2 Metrics computation

Precision, recall, and f1-score computations rely on the optimal pairings and a threshold
τ ∈ [0, 1] that controls the overlapping ratio. The metrics average elementary metrics
computed between paired motif sets; it can be a macro average with weights wi = 1/|R|
or a weighted average with weights wi = |Ri|/

∑|R|
j=1 |Rj |. In what follows, (σ, σ′) is the

optimal pairing between the motif sets of R and P , (π, π′) is the optimal pairing between
occurrences of Ri and Pj , and 1 is the indicator function.

Precision

precision(R,P ; τ) =

min(|R|,|P |)∑

i=1

wσ(i) ∗ indv-precision(Rσ(i), Pσ′(i); τ),

with

indv-precision(Ri, Pj ; τ) =
1

|Pi|

min(|Ri|,|Pj |)∑

u=1

1
(
overlap(Ri,π(u), Pj,π′(u)) ≥ τ(P e

i,π′(u) − P s
i,π′(u))

)
.

Recall

recall(Ri, Pj) =

min(|R|,|P |)∑

i=1

wσ(i) ∗ indv-recall(Rσ(i), Pσ′(i); τ)

with

indv-recall(Rσ(i), Pσ′(i); τ) =
1

|Ri|

min(|Ri|,|Pj |)∑

u=1

1
(
overlap(Ri,π(u), Pj,π′(u)) ≥ τ(Re

i,π′(u) −Rs
i,π′(u))

)
.

F1-score

f1-score(R,P ; τ) =
2 ∗ precision(R,P ; τ) ∗ recall(R,P ; τ)

precision(R,P ; τ) + recall(R,P ; τ)
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B.1 Oriented varifold

Oriented varifold for curves. In this section, we introduce the oriented varifold
associated with curves. For further readings on curves and surfaces representation as
varifolds, readers can refer to [KCC17; CT13]. We associate to γ ∈ C1((a, b),Rd+1) an
oriented varifold µγ , i.e. a distribution on the space Rd+1 × Sd defined as follows, for any
smooth test function ω : Rd+1 × Sd → R,

EY∼µγ [ω(Y )] = µγ(ω) =

∫ b

a
ω

(
γ(t),

γ̇(t)

|γ̇(t)|

)
|γ̇(t)|dt . (B.1)

Denoting by W the space of smooth test function, we have that µγ belongs to its
dual W∗. Thus, a distance on W∗ is sufficient to set a distance on oriented varifolds
associated to curve and thus on C1((a, b),Rd+1) by the identification γ → µγ . Remark
that in (TS-LDDMM), γ should be the parametrization of a time series’ graph G(I, f),
i.e. γ : t ∈ I → (t, f(t)) ∈ Rd+1 denoting by f : I → Rd the time series. However, in
practice, we work with discrete objects. That is why, we set W as an RKHS to use its
representation theorem. More specifically [KCC17, Proposition 2 & 4] encourages us to
consider a kernel k : (Rd+1×Sd)2 → R such that there exist two positive and continuously
differentiable kernels kpos and kdir, such that for any (x,−→u ), (y,−→v ) ∈ (Rd+1 × Sd)2

k((x,−→u ), (y,−→v )) = kpos(x, y)kdir(
−→u ,−→v ) , (B.2)

with moreover kdir > 0 and kpos which admits an RKHS Wpos dense in the space of
continous function on Rd+1 vanishing at infinite [Car+10].

Given such a kernel k : (Rd+1 × Sd)2 → R verifying [KCC17, Proposition 2 & 4], we
have that for any (x, v) ∈ Rd+1 × Sd, δ(x,−→v ) belongs to W∗ as a distribution and that the
dual metric ⟨·, ·⟩W∗ satisfies for any (x1, v1), (x2, v2) ∈

(
Rd+1 × Sd

)2,

⟨δ(x1,
−→v 1), δ(x2,

−→v 2)⟩W∗ = k((x1,
−→v 1), (x2,

−→v 2)) . (B.3)
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Thus, given two sets of triplets X = (li, xi,
−→v i)i∈[[1,T0−1]] ∈ (R × Rd+1 × Sd)T0−1, Y =

(l′i, yi,
−→w i)i∈[[1,T1−1]] ∈ (R× Rd+1 × Sd)T1−1 and denoting by

µX =

T0−1∑

i=1

liδ(xi,
−→v i), µY =

T1−1∑

i=1

l′iδ(yi,−→w i) , (B.4)

we have,

|µX − µY |2W∗ =
∑T0−1

i,j=1 lik((xi,
−→vi ), (xi,−→vi 0))lj +

∑T1−1
i,j=1 l

′
ik((yi,

−→wi), (yi,
−→wi))l

′
j

−2∑T0−1
i=1

∑T1−1
j=1 lik((xi,

−→vi ), (yi,−→wi))l
′
j

(B.5)

Then, using the identification X 7→ µX , Y 7→ µY , we can define a distance on sets of
triplets as dW∗,3(X,Y ) = |µX − µY |2W∗ .

Now, we aim to discretize the oriented varifold µG related to a time series’ graph G(I, f)
by using a set of triplets. This is carried out by using a discretized version of G(I, f), i.e.
G̃ = (gi = (ti, f(ti)))i∈[[1,T ]] ∈ (Rd+1)T , in the following way: For any i ∈ [T − 1], denoting
the center and length of the ith segment [gi, gi+1] by ci = (gi+gi+1)/2, li = ∥gi+1−gi∥, and
the unit norm vector of direction −−−→gigi+1 by −→vi = (gi+1−gi)/li, we define the set of triplets
X(G̃) = (li, ci,

−→vi )i∈[T−1] and its related oriented varifold µX(G̃) =
∑T−1

i=1 liδci,−→vi as in (B.4).
This is a valid discretization of the oriented varifold µG according to [KCC17, Proposition
1]: µX(G̃) converges towards µG as the size of the descretization mesh supi∈[T−1] |ti+1− ti|
converges to 0.

Finally, we define a distance on discretized time series’ graphs G̃1, G̃2 as dW∗(G̃1, G̃2) =
dW∗,3(X(G̃1), X(G̃2)).

Varifold kernels. Denote the one-dimensional Gaussian kernel by K
(a)
σ (x, y) = exp(−|x−

y|2/σ) for any (x, y) ∈ (Ra)2, a ∈ N and σ > 0. In the implementation, we use the
following kernels, for any ((t1, x1), (t2, x2)) ∈ (Rd+1)2, ((w1, v1), (w2, v2)) ∈ (Sd)2,

{
kpos(x, y) = K

(1)
σpos,t(t1, t2)K

(d)
σpos,x(x1, x2)

kpos(x, y) = K
(1)
σdir,t(w1, w2)K

(d)
σdir,x(v1, v2)

(B.6)

where σpos,t, σpos,x, σdir,t, σdir,x > 0 are hyperparameters. In practice, we select σpos,x ≈
σdir,x ≈ 1 when the times series are centered and normalized. Otherwise we select
σpos,x ≈ σdir,x ≈ σ̄s with σ̄s the average standard deviation of the time series. We choose
σpos,t ≈ σdir,t = mfe with fe the sampling frequency of the time series and m ∈ [5] an
integer depending on the time change between the starting and the target time series
graph. The more significant the time change, the higher m should be. The intuition
comes from the fact that the width σpos,t, σdir,t rules the time windows used to perform
the comparison, and σpos,x, σdir,x affects the space window. The size of the windows
should be selected depending on the variations in the data.

B.2 Tuning the hyperparameters of the TS-LDDMM velocity field
kernel

The parameter σT,0 should be chosen large compared the sampling frequency fe and
compared to average standard deviation σ̄s of the time series, e.g σT,0 = 100 as σ̄s ≈ fe ≈ 1.
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It makes the time transformation smoother. If σT,0 is too small, for instance, σT,0 = fe,
the effect of the time deformation is too localized, and there are not enough samples to
make it visible.

The parameter σT,1 should be of the same order as fe: two different points in time
can have various space transformations. σx should be of the same order of σ̄s: two
points with a big difference regarding space compared to σ̄s can have very different space
transformations.

We take c0 ≈ 10c1, we want to encourage time transformation before space transfor-
mation. We take (c0, c1) = (1, 0.1) in all experiments.

B.3 Experimental settings

All experiments were performed on a Debian 6.1.69-1 server with NVIDIA RTX A2000
12GB GPU, Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz, and 250 GB of RAM. The
source code will be available on Github.

We implemented TS-LDDMM in Python with the JAX library 1.

Initialization. As initialization of (6.14), all momentum parameters are set to 0, and
the initial graph of reference is picked from the dataset such that its length is equal to
the median length observed in the dataset.

Gradient descent. The chosen gradient descent method is "adabelief" [Zhu+20]
implemented in the OPTAX library 2. The gradient descent has two main parameters:
the number of steps (nb_steps) and the maximum stepsize value (ηM ). The stepsize has
a scheduling scheme:

• Warmup period on 0.1× nb_steps steps: the stepsize increases linearly from 0 to
ηM . The goal is to learn progressively the parameters. If the step size is too large
at the start, smaller steps at the end cannot make up for the mistakes made at the
beginning.

• Fine tuning periode on 0.9× nb_steps : the stepsize decreases from ηM to 0 with a
cosine decay implemented in the OPTAX scheduler, i.e. the decreasing factor as
the form 0.5(1 + cos(πt/T )).

By default, we set nb_steps to 400 and ηM to 0.1.

B.4 Datasets

Shape-based UCR/UEA time series classification datasets. We selected 15
shape-based datasets (7 univariates and 8 multivariates) from the from the University
of East Anglia (UEA) and the University of California Riverside (UCR) Time Series

1https://github.com/google/jax
2https://optax.readthedocs.io/en/latest/
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Classification Repository3 [Dau+19; Bag+18]. All datasets were downloaded with the
python package aeon4. Essential datasets information are summarized in Table B.1 and
further can be found in [Dau+19; Bag+18].

Table B.1 UCR/UEA shape-based time series datasets for classification.

Dataset Size Lengh Number of classes Number of dimensions Type

Univariate

ArrowHead 211 251 3 1 IMAGE
BME 180 128 3 1 SIMULATED
ECG200 200 96 2 1 ECG
FacesUCR 2250 131 14 1 IMAGE
GunPoint 200 150 2 1 MOTION
PhalangesOutlinesCorrect 2658 80 2 1 IMAGE
Trace 200 275 4 1 SENSOR

Multivariate

ArticularyWordRecognition 575 144 25 9 SENSOR
Cricket 180 1197 12 6 MOTION
ERing 60 65 6 4 SENSOR
Handwriting 1000 152 26 3 MOTION
Libras 360 45 15 2 VIDEO
NATOPS 360 51 6 24 MOTION
RacketSports 303 30 4 6 SENSOR
UWaveGestureLibrary 240 315 8 3 SENSOR

B.5 TS-LDDMM representation identifiability

In this experiment, we evaluate the ability of TS-LDDMM to retrieve the parameter v∗0
that encodes the deformation expId(v

∗
0) acting on a time series graph G by solving the

geodesic shooting problem (6.13) between G and expId(v
∗
0) ·G. Parameter identifiability is

an important property for subsequent statistical analysis. Results show that TS-LDDMM
representations are identifiable or weakly identifiable depending on the velocity field
kernel KG specification.

Settings. This experiment only involves the TS-LDDMM method in two different
settings:

• The velocity field kernel KG is well-specified: The velocity field kernel KG is
set to (c0, c1, σT,0, σT,1, σx) = (1, 0.1, 100, 1, 1), the varifold loss kernels (kpos, kdir)
are set to (σpos,t, σpos,t, σdir,t, σdir,x) = (2, 1, 2, 0.6), and the optimizer has 400 steps
with a maximum stepsize ηM of 0.05.

• The velocity field kernel KG is missspecified: The velocity field kernel KG

is set with (c0, c1, σT,1) = (1, 0.1, 1), σT,0 ranging in (1, 5, 10, 50, 100, 200, 300),
and σx ranging in (0.1, 1, 10, 100). The varifold loss kernels (kpos, kdir) are set to
(σpos,t, σpos,t, σdir,t, σdir,x) = (2, 1, 2, 0.6), and the optimizer has 400 steps with a
maximum stepsize ηM of 0.05.

3https://timeseriesclassification.com
4https://www.aeon-toolkit.org/en/stable/
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Figure B.1 Plots of expId(v0(α
∗,x)) · x for different values of α∗ according to its sampling

parameter ta, sa,ms, taking x = G(s0) with s0 : k ∈ [300]→ sin(2πk/300).

Table B.2 Values of L(expId(v0(α
∗,x)) · x, expId(v0) · x) as α∗ is sampled according to

Gen(10,10,50) and v̂0 is estimated using KG with varying parameters σT,1, σx.

σT,0\σx 1 10 50 100 200 300

0.1 2e+0 3e-4 1e-5 4e-6 7e-4 4e-3
1 4e-2 1e-4 1e-5 4e-6 7e-4 4e-3
100 4e-2 2e-4 1e-5 4e-6 7e-4 4e-3

provided that the hyperparameters and the reference graph are wisely selected, i.e.,
the parameter v∗0 generating a deformation expId(v

∗
0) of a time series graph G can be

estimated from the data G, expId(v
∗
0) · G by solving the geodesic shooting problem (6.13).

The velocity field kernel KG is well specified. First, we show the model identifiability
when the kernel KG is well specified: the estimated parameter is a good approximation of
the generating parameter when the generation and the estimation procedure use the same
hyperparameters for the RKHS kernel KG. All the hyperparameter values for generation
and estimation are given in Appendix B.5.

We fix the initial control points as x = (xk = (k, sin(2πk/300)))k∈[[1,300]]. Given
ms ∈ N∗ and ta, sa > 0, we randomly generate initial momentums α∗ = (α∗

k)k∈[[1,n0]] with
the following sampling, called Gen(ms, ta, sa): For any k ∈ [[1, n0]], α′

k is sampled according
to a Gaussian normal distribution N (0d+1, Id+1). Then, (α′

k)k∈[[1,n0]] is regularized by a
rolling average of size ms, we get ᾱ′ = (ᾱ′

k)k∈[[1,n0]]. Finally, we normalize ᾱ′ to derive
α∗ such that |([α∗

k]t)k∈[[1,n0]]| = tamp and |([α∗
k]s)k∈[[1,n0]]| = samp for any k ∈ [[1, n0]],

denoting by [α∗
k]t, [α

∗
k]s the time and space coordinates of α∗

k respectively. Note that the
regularizing step (α′

k)k∈[[1,n0]] → ᾱ′ is necessary to obtain realistic deformations which
take into account the regularity induced by the RKHS V.

Then, using v0(α
∗,x) as defined in (6.9) with initial momentums α∗ and control points

x, we apply the induced deformation expId(v0) by (6.12) to x and obtain expId(v0) · x.
Finally, we solve (6.13) to recover an estimation α̂ of α∗ and report the average relative
error (ARE) |v0(α̂,x) − v0(α

∗,x)|V/|v0(α∗,x)|V on 50 repetitions. This procedure is
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performed for any ms, ta, sa ∈ {10, 50, 100} × {5, 10, 15, 20}2. Mean, standard devia-
tion, and maximum of the ARE on all these hyperparameters choices are respectively
0.10,0.03,0.17. Therefore, the estimation procedure (6.13) offers a good approximation
of the true parameter when the kernel KG is well specified. We observe that the estima-
tion is difficult when ta ≪ sa because the time series can be very noisy as illustrated in
Figure B.1: this impacts the Varifold loss which is sensitive to tangents.

The velocity field kernel KG is misspecified. We demonstrate a weak identifiability
when the kernel KG is misspecified: we can reconstruct the graph time series’ after
deformations even if the hyperparameters of KG are different during the generation and
the estimation. The hyperparameters of KG during generation are (c0, c1, σT,0, σT,1, σx) =
(1, 0.1, 100, 1, 1) and we fix σT,1, c0, c1 = (1, 1, 0.1) for KG during estimation. We aim
to understand the impact of σT,1, σx on the reconstruction since they are encoding the
smoothness of the transformation according to time and space.

For any choice of the hyperparameters σT,1, σx ∈ {1, 10, 50, 100, 200, 300}×{0.1, 1, 100}
related to KG in the estimation, we average L(expId(v0(α

∗,x)) · x, expId(v̂0) · x) on 50
repetitions when α∗ is sampled according to Gen(10, 10, 50) and v̂0 = v0(α̂,x) denoting by
α̂ the result of the minimization (6.13). We observe in Table B.2 that the reconstruction
is almost perfect except in the case when σt,0 = 1 during estimation, while σt,0 = 100
during generation. Compared to σT,0, σx has nearly no impact on the reconstruction. In
Appendix B.1-B.2, we propose guidelines to drive future hyperparameters tuning and
further discussions related to σT,1, c0, c1.

B.6 Robustness to irregular sampling

This experiment is inspired by [OLK24] where the authors perform an extensive comparison
of Neural Ordinary Differential Equations (Neural ODEs) methods [Kid+20]. We assess
the classification performances of several methods under regular sampling (0% missing
rate) and three irregular sampling regimes on 15 shape-based datasets (7 univariate & 8
multivariate). Methods and training strategy are taken from its associated Github5 and
described in what follows. We conclude with the results, which show that our method,
TS-LDDMM, outperforms all methods for sampling regimes with missing rates: 0%, 30%,
and 50%.

B.6.1 Benchmark methods

In related work, we give an overview of Neurals ODEs methods and their relation with
TS-LDDMM.

• RNN-based methods: Baseline reccurent neural networks including RNN [MJ99],
LSTM [HS97], and GRU [Chu+14].

5https://github.com/yongkyung-oh/Stable-Neural-SDEs

https://github.com/yongkyung-oh/Stable-Neural-SDEs
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• Attention-based methods: Multi-Time Attention Networks (MTAN) [SM21] and
Multi-Integration Attention Module (MIAM) [Lee+22]. Both handle multivariate
time series irregularly sampled with attention mechanisms.

• Neural ODEs: ODE-LSTM [LH20] a form of Neural-ODEs used to learn continuous
latent representations.

• Neural SDEs: Neural SDE [Liu+19] and Neural LNSDE [OLK24] have been proposed
to model randomness in time-series using drift and diffusion terms as an extension
of Neural-ODEs.

• Shape-Analysis methods: TS-LDDMM (ours) and LDDMM [Gla+08]. From shape
analysis, both methods learn representations by solving ODEs parametrized with
Kernels. While both methods handle multivariate signals irregularly sampled,
TS-LDDMM is specifically designed for time series.

B.6.2 Model settings

Neural ODEs methods. As depicted in [OLK24], any Neural ODEs layer in Ap-
pendix B.6.1 is followed by an MLP with two fully connected layers with ReLU activations.
The risk of overfitting and the model regularization are handled with a dropout rate of
10% and an early-stopping mechanism, ceasing the training when the validation loss does
not improve for 10 successive epochs.

For each method and dataset, the learning rate, the hidden vector dimensions, and
the number of layers are optimized to minimize the CrossEntropy loss on a validation
set using the Ray 6 Python library. The learning rate varies from 10−4 to 10−1 using
log uniform search, the hidden vector dimension ranges from 16, 32, 64, 128 using grid
search, and the number of layers ranges from 1, 2, 3, 4 using grid search. The batch size
was selected from 16, 32, 64, 128 according to the size of the dataset. All methods were
trained for 100 epochs, and the best method was selected based on the lowest validation
loss.

TS-LDDMM and LDDMM. Representations learned with TS-LDDMM or LDDMM
by solving the atlas estimation problem (6.14) are fed to a Support Vector Classifier
(SVC) from scikit-learn 7. All SVC’s hyperparameters are set to default except the
regularization term C, which is set through grid search on a validation set with the macro
f1-score 8.

To learn TS-LDDMM (resp. LDDMM) representations, the velocity field kernel
KG is set to (c0, c1, σT,0, σT,1, σx) = (1, 0.1, 0.33l̄, 1, nd), (resp. (σT , σx) = (0.33l̄, nd))
where l̄ is the average time series length and nd the number of dimensions. For both
methods and all datasets, the varifold loss kernels (kpos, kdir) are identical and set
to (σpos,t, σpos,t, σdir,t, σdir,x) = (2, nd, 2, nd). For TS-LDDMM (resp. LDDMM), the
optimizer is set with 400 epochs (resp. 400) and a maximum learning rate ηM = 0.1 (resp.

6https://github.com/ray-project/ray
7https://scikit-learn.org/stable/
8https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://github.com/ray- project/ray
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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ηM = 0.01). In all cases, the initial reference graph is selected in the dataset as a time
series with the median length.

B.6.3 Protocol

In this experiment, we investigate the robustness to missing samples and the classification
performance of TS-LDDMM compared to Neural ODEs on 15 datasets described in
Appendix B.4. For fairness between methods of different architectures, the evaluation
protocol on each dataset and method is as follows:

1. Spilt the dataset in train 75%, validation 15%, and test 15%.

2. Tune hyperparameters with train and validation sets and a missing rate of 0%.

3. For each missing rate in [0%,30%,50%,70%]

• Remove samples in time series in the train and test sets according to the
missing rate and the drop procedure described in [Kid+20].

• Train the model on the train set
• Evaluate the macro f1-score on the test set

B.6.4 Results

In this experiment, we investigate the robstuness to missing samples and the classification
performance of TS-LDDMM representations. We compare TS-LDDMM with LDDMM
and 8 neural ODEs networks. Performances are evaluated in terms of average macro
f1-score and rank on four different regimes of missing rate 0%,30%,50%, and 70%. Results
are aggregated in Table B.3.

On three out of four regimes (0%,30%, and 50%) TS-LDDMM classifier is the best
performer in terms of f1-score and rank. For missing rates of 0% and 30%, the score
increases by 10% compared to the second-best performer, LDDMM. However, LDDMM
is not the second-best performer in rank (Neural LNSDE), showing its sensitivity to
parameterization, unlike TS-LDDMM, which remains consistent. Performances of Neural
LNSDE remain constant with the increase of the missing rate as observed in [OLK24],
and it becomes the best performer for missing rate 70%. The decrease in TS-LDDMM
performances with the increasing missing rate is due to the varifold loss, which poorly
approximates the time series shape. Other losses might be more relevant for high missing
rates.

Overall, TS-LDDMM is a relevant and consistent shape-based representation for
irregularly sampled multivariate time series for missing rates up to 50% .

B.7 Classification benchmark on regularly sampled datasets

In this section, we compare the classification performances of TS-LDDMM with other
methods from shape analysis on 15 shape-based datasets of time series regularly sampled.
TS-LDDMM outperforms other methods on 12 out of 15, highlighting its relevance for
shape analysis when dealing with time series.
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Table B.3 Comparison of average macro f1-score and rank as the sample dropping rate increases.
First & second best performers. TS-LDDMM is the best performer on three out of four regimes.

Methods Regular 30 % dropped 50 % dropped 70 % dropped
F1-score Rank F1-score Rank F1-score Rank F1-score Rank

RNN (1999) 0.64± 0.21 6.2 0.53± 0.23 6.6 0.48± 0.21 7.2 0.44± 0.21 6.07
LSTM (1997) 0.61± 0.29 6.0 0.57± 0.29 6.27 0.53± 0.25 6.07 0.51± 0.29 5.27
GRU (2014) 0.71± 0.26 4.2 0.68± 0.28 4.27 0.66± 0.28 3.73 0.59± 0.28 3.67
MTAN (2021) 0.59± 0.28 7.13 0.58± 0.28 5.8 0.54± 0.29 5.33 0.51± 0.28 5.0
MIAM (2022) 0.48± 0.35 6.93 0.42± 0.33 8.27 0.47± 0.31 6.93 0.35± 0.31 7.6
ODE-LSTM (2020) 0.63± 0.24 6.0 0.57± 0.25 6.53 0.51± 0.24 7.27 0.45± 0.23 6.73
Neural SDE (2019) 0.48± 0.28 7.67 0.47± 0.26 7.47 0.45± 0.27 7.13 0.45± 0.25 6.0
Neural LNSDE (2024) 0.7± 0.27 3.87 0.68± 0.29 4.0 0.67± 0.25 3.53 0.66± 0.23 2.47
LDDMM (2008) 0.72± 0.2 4.53 0.7± 0.21 4.2 0.57± 0.25 5.0 0.4± 0.25 7.13
TS-LDDMM (ours) 0.83± 0.18 2.93 0.8± 0.18 2.07 0.7± 0.26 3.33 0.51± 0.27 5.67

B.7.1 Benchmark methods

• SRV-based method: we include TCLR [Heo+24] a logistic regression on the tangent
space of the Frechet mean with Square Root Velocity (SRV representation). We
also include Shape-FPCA [WHS24] that encodes both the time series and its time
parameterization.

• LDDMM-Based : TS-LDDMM (ours) and LDDMM [Gla+08]. Both methods learn
representations by solving ODEs parametrized with Kernels. While both methods
handle multivariate signals, TS-LDDMM is specifically designed for time series.

B.7.2 Model settings

TCLR & Shape-FPCA. Shape-FPCA is available in the Python library FDASRSF 9. Once
the shape-FPCA representations are learned, they are fed to an SVC from scikit-learn.
FDASRSF provides SRV representation methods that we combined with a logistic regression
from scikit-learn to implement TCLR. For both methods, the number of steps to learn
the Frechet mean is set to 50, and the regularization hyperparameter C is set through grid
search on a validation set with the macro f1-score. Other parameters are set to default.

TS-LDDMM & LDDMM. Representations learned with TS-LDDMM or LDDMM by
solving the atlas estimation problem (6.14) are fed to an SVC from scikit-learn. All
SVC’s hyperparameters are set to default except the regularization term C, which is set
through grid search on a validation set with the macro f1-score.

To learn TS-LDDMM (resp. LDDMM) representations, the velocity field kernel
KG is set to (c0, c1, σT,0, σT,1, σx) = (1, 0.1, 0.33l̄, 1, nd), (resp. (σT , σx) = (0.33l̄, nd))
where l̄ is the average time series length and nd the number of dimensions. For both
methods and all datasets, the varifold loss kernels (kpos, kdir) are identical and set
to (σpos,t, σpos,t, σdir,t, σdir,x) = (2, nd, 2, nd). For TS-LDDMM (resp. LDDMM), the
optimizer is set with 400 epochs (resp. 400) and a maximum learning rate ηM = 0.1 (resp.

9https://fdasrsf-python.readthedocs.io/en/latest/

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
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ηM = 0.01). In all cases, the initial reference graph is selected in the dataset as a time
series with the median length.

Protocole. For each dataset and method, the evaluation protocol is a simple train,validation
test with hyperparameter tuning:

1. Split The dataset in train 75%, validation 15%, and test 15%.

2. Training and hyperparameters tuning with train and validation sets

3. Evaluate the macro f1-score on the test set

B.7.3 Results

In this experiment, we investigate the classification performances of several methods from
shape analysis on 15 shape-based time series datasets (7 univariate and 8 multivariate).
The performances are evaluated in terms of macro f1-score. Results are aggregated in
Table B.4.

The TS-LDDMM-based classifier outperforms other methods on 12 out of 15 datasets.
TCLR is the second-best performer on univariate datasets; however, its current imple-
mentation with FDASRSF does not extend to the multivariate case, which limits usage.
LDDMM performances are lower than TCLR, and Shape-FPCA is the worst performer.

Overall, TS-LDDMM representations are well suited for shape-based time series
classification, and its extension to multivariate irregularly sampled time series makes it a
relevant option for time series shape analysis.

Table B.4 F1-score comparison between methods from shape analysis on 15 datasets. First and
second best performers.

Dataset Shape-FPCA (2024) TCLR (2024) LDDMM (2008) TS-LDDMM (ours)

Univariate

ArrowHead 0.18 0.75 0.84 0.91
BME 0.16 1.00 0.82 1.00
ECG200 0.40 0.67 0.81 0.79
FacesUCR 0.08 0.73 0.69 0.86
GunPoint 0.93 0.97 0.83 1.00
PhalangesOutlinesCorrect 0.39 0.63 0.53 0.52
Trace 0.55 1.00 0.46 1.00

Multivariate

ArticularyWordRecognition – – 0.98 1.00
Cricket – – 0.77 0.93
ERing – – 0.95 0.98
Handwriting – – 0.22 0.44
Libras – – 0.56 0.60
NATOPS – – 0.82 0.82
RacketSports – – 0.83 0.79
UWaveGestureLibrary – – 0.72 0.81

B.8 Mice ventilation analysis with TS-LDDMM

Settings. This experiment involves TS-LDDMM and LDDMM [Gla+08] methods. Both
methods are run twice, first on respiratory cycles before exposure to the irritant molecule
to capture mice breathing behavior at rest and on all respiratory cycles to capture the
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influence of the irritant molecule. Exposure to the irritant molecule leads to significant
shape deformation in the respiratory cycles, and the terms must be added to the varifold
loss to capture deformations at a large time scale.

TS-LDDMM parameters.

• Before exposure: The velocity field kernel KG is set to (c0, c1, σT,0, σT,1, σx) =
(1, 0.1, 150, 1, 2). The varifold loss is the sum of three varifolds to capture shapes
variations at different scales with parameters: (Varifold 1,Varifold 2,Varifold 3):
((5, 2, 5, 1), (2, 1, 2, 0.6), (1, 0.6, 1, 0.6)) and the mapper (σpos,t, σpos,t, σdir,t, σdir,x).
The optimizer has 800 steps with a maximum stepsize ηM of 0.3.

• Before/after exposure: The velocity field kernel KG is set to (c0, c1, σT,0, σT,1, σx) =
(1, 0.1, 220, 1, 2). The varifold loss is the sum of four varifolds to capture shapes
variations at different scales with parameters: (Varifold 1,Varifold 2,Varifold 3,
Varifold 4): ((30, 2, 30, 1), (5, 2, 5, 1), (2, 1, 2, 0.6), (1, 0.1, 1, 0.1)) and the mapper
(σpos,t, σpos,t, σdir,t, σdir,x). The optimizer has 800 steps with a maximum stepsize
ηM of 0.3.

LDDMM parameters. Note that varifold losses are unchanged between TS-LDDMM
and LDDMM. Compared to TS-LDDMM, the convergence of LDDMM is more sensitive
to the maximum stepsize ηm, which must remain small for LDDMM to guarantee the
convergence.

• Before exposure: The velocity field kernel KG is an anysotropic Gaussian ker-
nel with parameters σT = 150 for the time dimension and σx = 2 for space
dimensions. The varifold loss is the sum of three varifolds to capture shapes
variations at different scales with parameters: (Varifold 1,Varifold 2,Varifold 3):
((5, 2, 5, 1), (2, 1, 2, 0.6), (1, 0.6, 1, 0.6)) and the mapper (σpos,t, σpos,t, σdir,t, σdir,x).
The optimizer has 800 steps with a maximum stepsize ηM of 0.01.

• Before/after exposure: The velocity field kernel KG is an anysotropic Gaus-
sian kernel with parameters σT = 220 for the time dimension and σx = 2 for
space dimensions. The varifold loss is the sum of four varifolds to capture shapes
variations at different scales with parameters: (Varifold 1,Varifold 2,Varifold 3,
Varifold 4): ((30, 2, 30, 1), (5, 2, 5, 1), (2, 1, 2, 0.6), (1, 0.1, 1, 0.1)) and the mapper
(σpos,t, σpos,t, σdir,t, σdir,x). The optimizer has 800 steps with a maximum stepsize
ηM of 0.01.
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