
1

Unsupervised classification of
plethysmography signals with advanced visual
representations
Thibaut Germain 1, Charles Truong 1, Laurent Oudre 1,∗ and Eric Krejci 2
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ABSTRACT2

Ventilation is a simple physiological function that ensures the vital supply of oxygen and the3
elimination of CO2. The recording of the airflow through the nostrils of a mouse over time makes it4
possible to calculate the position of critical points, based on the shape of the signals, to compute5
the respiratory frequency and the volume of air exchanged. These descriptors only account for6
a part of the dynamics of respiratory exchanges. In this work we present a new algorithm that7
directly compares the shapes of signals and considers meaningful information about the breathing8
dynamics omitted by the previous descriptors. The algorithm leads to a new classification of9
inspiration and expiration, which reveals that mice respond and adapt differently to inhibition of10
cholinesterases, enzymes targeted by nerve gas, pesticide, or drug intoxication.11

Keywords: Respiration, Breathing, Dynamic Time Warping (DTW), Clustering, Machine Learning12

1 INTRODUCTION

Measurement of respiratory function in conscious, spontaneously breathing animals is essential in different13
settings such as studying drug effects on the respiratory system (Murphy, 2002), monitoring mouse models14
of human diseases (Willmann et al., 2017) or evaluating airway irritant molecules (Vijayaraghavan et al.,15
1993). Plethysmography methods are commonly used to record respiration. Several plethysmographs16
exist (whole-body (WBP, Bartlett and Tenney (1970)), dual-chamber (DCP, Hoymann (2012)), head17
out-of-body (HOB, Vijayaraghavan et al. (1993)), and the choice between them is based on a trade-off18
between invasiveness and accuracy of measurement (Bates and Irvin, 2003).19

For WBP, the mouse is placed in near-natural conditions: it is a large box where the mouse is not20
restrained and can move freely. Changes in pressure or flow within the chamber are measured over21
time, reflecting changes of volume, humidity and temperature of air entering and leaving the lung. Flow22
or differential pressure recordings allow the computation of the respiratory frequency and the volumes23
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exchanged. Nevertheless, lung function is poorly measured, and the reproducibility of the experiment24
depends on many environmental parameters (Bates and Irvin, 2003; Bruggink et al., 2022).25

The DCP consists of two sealed compartments where the animal’s head is in one compartment and its26
body in the other. The mouse is constrained in a tube with the nose pointing into the nasal compartment27
(respiration is primarily nasal in mice) (Mailhot-Larouche et al., 2018). This device allows for independent28
monitoring of the nasal airflow and the airflow caused by the thoracic movements of an animal. DCP29
is a relevant approach to assessing the ventilatory mechanics of the respiratory system, and it provides30
information on ventilatory and lung function (Hoymann, 2012). As the mouse is constrained, it limits the31
duration of respiration recording to less than one hour. As an alternative, the HOP uses only the thoracic32
compartment imposing less constraint on the mouse (Vijayaraghavan et al., 1993). Recordings from DCP33
and HOP directly reflect the air inhaled and exhaled during respiration. These methods have been used34
for several decades to monitor changes in mouse respiration caused by airborne chemicals on the airways35
(Vijayaraghavan et al., 1993) and have been improved to limit air leakage from collar (Bruggink et al.,36
2022).37

Respiration airflows are used to compute respiratory cycle descriptors like inspiration/expiration duration,38
air volume inhaled/exhaled, or respiratory frequency (IXO2 software, emka TECHNOLOGIES, Mailhot-39
Larouche et al. (2018)). These descriptors are essential to quantify respiratory exchanges; nevertheless,40
they only reveal part of the information contained in the respiration airflow.41

Recently, a new machine learning-based method attempted to incorporate the missing information by42
extracting respiratory cycle patterns from flows recorded in WBP (Sunshine and Fuller, 2021). They used43
principal component analysis and a clustering algorithm to group common respiratory cycle patterns. The44
groups reveal variations in the temporal appearance of the flows that are not detectable with standard45
analysis of respiratory rate and tidal volume. Because each group had physiological significance, they46
could track significant changes over time. However, the different categories cannot be associated with47
physiological alterations or adaptations because the signals recorded in WBP mix too many parameters48
(volume/temperature/humidity).49

It is well established that DCP or HOP is much more accurate for studying respiratory physiology than50
WBP. Nonetheless, descriptors inferred from the nasal or thoracic airflow also miss meaningful information51
to describe breathing dynamics adequately. In this study, we propose a new approach to classify the52
different respiratory behaviors from signals recorded with DCP or HOP. The method relies on a robust53
algorithm to identify the beginning of inspiration and expiration phases. As a difference with (Sunshine54
and Fuller, 2021) which studies the respiration cycle, we independently study inspiration and expiration.55
Our method is based on machine learning tools for time series. It uses a K-Means clustering algorithm and56
the well-established Dynamic Time Warping (DTW) distance. DTW compares the shape of time series57
independently of time fluctuations. This property is particularly interesting for handling inter-individual58
variability. In contrast to (Sunshine and Fuller, 2021), we assess the similarity between inhalation or59
exhalation cycles directly from their shapes rather than from learned features. It allows a more robust and60
interpretable study of respiratory behaviors and dynamics. To evaluate the relevance of this new method,61
we exploited part of the recordings from a previous experiment of our group (Nervo et al., 2019), where we62
studied the consequences on respiration of partial deficits of acetylcholinesterase (AChE) and its inhibition.63
AChE normally destroys acetylcholine (ACh) in synapses of the nervous systems (central and peripheral)64
and skeletal muscles. Inhibition of this enzyme results in respiratory arrest, which may have multiple65
origins (Stone, 2018).66
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Figure 1. A: Illustration of a double-chamber plethysmograph. The term dpt stands for differential pressure
transducer which measures the pressure in each compartment, the pressure then being converted to flow. B:
Nasal airflow (top) and lung volume (bottom). During inspiration, airflow is positive (grey) and during
expiration, airflow is negative (pink).

2 METHOD

2.1 Background67

With a Double Chamber Plethysmograph (DCP), the nasal airflow induced by breathing is tracked through68
the head compartment (Hoymann, 2012), as illustrated on Figure 1-A. The flow is expressed in ml.s−1, and69
is a positive quantity for inspiration, and a negative quantity for expiration. The detection of inspiration or70
expiration start times cannot be done accurately from the nasal airflow due to biological phenomena such71
as coughing or vocalizing (Bates and Irvin, 2003). As an alternative, the lung volume, which is obtained72
by integration of the nasal airflow, offers more robust properties for such detection (Vijayaraghavan et al.,73
1993). Intuitively, the lung volume fluctuates successively from being empty (inspiration start time: tin) to74
being full (expiration start time: tout). These states correspond to local minima and maxima on the volume,75
which are easy to track with automated procedures. The characterization of breathing phases is illustrated76
in Figure 1-B.77

2.2 Overview of the method78

The method is composed of three main steps:79

1. detection of the respiratory cycles and extraction of the inspiration/expiration sequences,80

2. computation of the reference sequences through an unsupervised clustering procedure,81

3. characterization and symbolization of recordings based on the extracted reference sequences.82

Step 1: Detection of the respiratory cycles and extraction of the inspiration/expiration sequences.83
The first step of the process consists in extracting the respiratory cycles from the input data. Each cycle is84
composed of two phases: inspiration and expiration. A segmentation algorithm isolates the two periods.85
Simplistically, given a raw signal s, the first step of our method outputs a set of inspiration sequences86
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Figure 2. A: Step 1, Detection of the respiratory cycles and extraction of the inspiration/expiration
sequences. B: Step 2, Computation of the reference sequences. The C(i) denote the clusters and r(i), the
reference sequences. C: Step 3, Characterization and symbolization of a recordings.

{s(1)in , ..., s
(Ns)
in } and a set of expiration sequences {s(1)out, ..., s

(Ns)
out }, where Ns is the total number of87

cycles observed in the original signal s. Figure 2-A illustrates the detection and extraction process of88
inspiration/expiration.89

Step 2: Computation of the reference sequences. The second step consists in computing a small number90
of reference sequences from the sets of inspiration/expiration sequences. The reference sequences represent91
groups of sequences with common properties to highlight typical inspiration/expiration behaviors. To that92
aim, the clustering algorithm K-means is combined with the measure of fit Dynamic Time Warping (DTW),93
which computes the similarities between sequences of potentially different lengths. The output of this step94
is a set of inspiration reference sequences {rin(1), rin(2), . . . } and a set of expiration reference sequences95
{rout(1), rout(2), . . . }. Figure 2-B illustrates the computation process of reference sequences in the case of96
inspiration.97

Step 3: Characterization and symbolization of recordings. The objective is to automatically98
characterize a recording s′ using the reference sequences extracted in Step 2. To that end, the signal99
is first segmented through the procedure described in Step 1. Then, each of the Ns′ inspiration/expiration100
sequences present in s′, is assigned a symbol which represents the reference sequence that is closest101
considering the measure DTW. This procedure results in a symbolic representation of s′, where each102
respiratory cycle is replaced by a symbol composed of a letter (which specifies the type of inspiration103
sequence observed) and a number (which specifies the type of expiration sequence observed), Figure 2-C104
illustrates the process of building a symbolic representation.105

2.3 Detection of the respiratory cycles and extraction of the inspiration/expiration106
sequences107

As mentioned previously, nasal airflow suffers from noise, making current inspiration and expiration108
phases detection methods unreliable. Inaccurate detection then leads to biased descriptors and eventually109
to false experimental conclusions. To address this challenge we propose an algorithm that looks for local110
minima and maxima of the lung volume. Let s denote a nasal airflow signal.111
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First the lung volume v is computed from the nasal airflow s. This can be done by robust numerical112
integration:113

vt :=

(
t∑

u=1

su

)
− (ât+ b̂) (1)

where â, b̂ ∈ R are such that
∑

t vt = 0 and
∑

t tvt = 0. The affine function t→ ât+ b̂ removes the linear114
trend appearing during the integration process.115

Next, the inspiration start times tin and the expiration start times tout are identified using a peak-116
searching procedure that detects local minima (respectively maxima), of the nasal volume signal v.117
To ensure an alternation between inspiration and expiration, the algorithm first searches for all local118
minima (corresponding to the starts of the inspirations) and then searches for the maximum between two119
consecutive local minima. The algorithm that detects local minima/maxima is described in Appendix 1.120
Once all inspiration/expiration start times tin and tout are extracted, the original nasal airflow signal s is121

split into a set of inspiration sequences {s(1)in , ..., s
(Ns)
in } and a set of expiration sequences {s(1)out, ..., s

(Ns)
out },122

where Ns is the total number of cycles observed in the original signal s.123

2.4 Computation of the reference sequences124

Provided a set of inspiration/expiration sequences, we now aim to compute K reference sequences that125
represent typical respiratory behaviors. In the following sections, X = {x(1), . . . ,x(N)} represents a set of126
sequences (either inspiration or expiration) of potentially different durations.127

2.4.1 Clustering algorithm128

The K reference sequences from the set X are computed with the well-known unsupervised clustering129
procedure called K-Means (Kaufman and Rousseeuw, 2009). This algorithm creates K non-overlapping130
groups (or clusters) {C(1), . . . , C(K)} of sequences with common properties. Roughly, K-Means is a two-131
step iterative refinement technique that assigns each sequence to the closest current centroid and then132
updates each centroid with regard to the new assignments. A centroid is a reference sequence r(i) which133
corresponds to the average sequence of the cluster C(i). Two crucial ingredients of the K-means algorithm134
are the measure of fit that is used to assign each sequence to a cluster and the procedure used to compute135
the reference sequence of each cluster. Although most publications usually use the Euclidean distance, it is136
not possible in our context since the sequences to cluster do not have the same duration. Also, the measure137
of fit must be invariant to some sequence properties: amplitude offset, amplitude shift, time fluctuation,138
noise and outliers. Visual representation of each distortions are presented in Figure 3-A.139

The main steps of our clustering approach are:140

1. The input sequences are pre-processed by taking the z-normalized sequences.141

2. The clustering algorithm is initialized using the K-Means++ algorithm (Arthur and Vassilvitskii, 2007).142

3. Sequences are assigned to a cluster according to the Dynamic Time Warping (DTW) measure of fit.143

4. The reference sequences are computed using the Batch Stochastic DTW Barycenter Averaging (BS-144
DBA) procedure.145

5. Step 2 and 3 are repeated until a certain stopping criterion is met.146

For our experiment, the stopping criterion corresponds to 10 iterations of steps 2 and 3.147
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Figure 3. A: Undesirable sequence distortions. The grey line is the original signal and the blue line is
the distorted signal. B: Difference between Euclidean alignment and DTW alignment. The compared
sequences are in blue, and the orange lines represent the point-wise matching between the two sequences
in the Euclidean case and the DTW case. C: Representation of a barycenter computed through our method
BS-DBA. The learned barycenter is in red, and the observations are in black.

2.4.2 Pre-processing148

During the pre-processing step, all sequences are first centered to zero mean and scaled to unit variance149
(z-normalization):150

x̃t =
xt − x̄

σx
(2)

where x̄ and σx are respectively the average and the standard deviation of x. The pre-processing step allows151
being invariant to amplitude offset and amplitude shift.152

2.4.3 Dynamic Time Warping153

At each iteration, the K-Means algorithm assigns each sequence to the nearest centroid. The distance is154
computed using DTW (Berndt and Clifford, 1994). DTW is commonly used in times-series data-mining155
(Esling and Agon, 2012; Fu, 2011). Intuitively, DTW considers as very similar (the distance is close to zero)156
two sequences of a given phenomenon occurring at different speeds. This property is particularly interesting157
for our problem since some mice may breathe in or exhale faster than others. To do this, DTW finds an158
optimal match between a query sequence and a referent sequence by locally stretching or contracting the159
time axis of the query sequence. The DTW measure produces the squared Euclidean distance between the160
aligned time series.161

This measure is invariant to temporal fluctuation and can compare sequences of different duration.162
Considering two sequences x ∈ Rm and y ∈ Rn, the computation of the DTW measure is done in O(mn)163
in time and space using dynamic programming. In its original form, the DTW measure is sensitive to noise164
and outliers. Such distortions can lead to pathological alignments with unrealistic time dilations. To avoid165
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such alignments, we use the Sakoe-Chiba constraints which impose that the dilations are smaller than a166
given duration (Sakoe and Chiba, 1978).167

Figure 3-B shows the difference between the linear mapping of the Euclidean distance and the nonlinear168
mapping of the DTW distance. A mathematical definition of DTW is given in Appendix 2.169

2.4.4 Time-series averaging170

Finding an average sequence is an important sub-routine of K-Means algorithm. Indeed, the quality of171
each cluster is highly dependent on the quality of its centroid (Aghabozorgi et al., 2015). At each iteration,172
all sequences in the data set X are assigned to their closest centroids {r(1), . . . , r(K)}. Then, each centroid173
is updated by computing the average sequence based on the new assigment.174

For any set of sequences X ′ ⊂ X , the average sequence, with respect to the DTW, is the solution of the175
following optimization problem:176

arg min
y∈RL

∑
x′∈X ′

DTW2(y,x′) (3)

where L > 0 is the average duration of the sequences in X ′ .177

Accurately and efficiently solving Expression 3 is not trivial (Niennattrakul and Ratanamahatana, 2007;178
Jain, 2019). Traditional averaging methods cannot deal with the non-linear mapping between sequences of179
potentially different duration and several algorithms have tried to solve this issue (Petitjean et al., 2011;180
Morel et al., 2018). A recent work (Schultz and Jain, 2018) uses the subdifferentiability property of the181
optimization function to develop a stochastic subgradient descent algorithm (S-DBA). For a trade-off182
between accuracy and speed, we implemented a batch version of S-DBA called BS-DBA. Figure 3-C183
illustrates the result of averaging a time series data set using BS-DBA. Appendix 3 provides details on the184
subdifferentiability of the optimization function and the implementation of BS-DBA.185

2.5 Characterization and symbolization of recordings186

From a recording s′, we first perform the segmentation process described in Section 2.3 in order to extract187
the inspiration/expiration sequences. Then, we use a 1-NN (nearest neighbor) algorithm to assign each188
sequence to the reference sequence, which is the closest to it, in the sense of the DTW measure.189

To avoid incoherent symbols, some inspiration/expiration sequences are treated as outliers if their distance190
to their reference sequence is higher than a threshold. The threshold is different for each reference sequence.191
It corresponds to the α-quantile of the distance distribution observed within the reference sequence cluster192
during the learning step. By default we choose the threshold value α = 0.95.193

This procedure yields a symbolic representation of s′, where each respiratory cycle is replaced by a194
symbol composed of a letter (which specifies the type of inspiration) and a number (which specifies the195
type of expiration).196

2.6 Connection with ventilation pattern descriptors197

Most ventilation pattern descriptors are computed with algebraic formulas based on a cycle segmentation198
of airflow using IOX2 software from emka TECHNOLOGIES (Mailhot-Larouche et al., 2018). The199
algorithm to extract inspiration and expiration sequences presented in section 2.3 can be used as a200
preprocessing step to compute such descriptors with more precision.201

In the present work and for the purpose of validation, we have used four descriptors:202
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• Inspiratory/Expiratory Time (Ti/Te, s): Duration of inspiration/expiration.203

• Nasal Inspiratory/Expiratory Volume (NIV/NEV, ml): Volume of air in/out during204
inspiration/expiration.205

3 DATA AND EXPERIMENT

3.1 Data Origin206

We applied our methodology to a subset of data from experiments that aimed to understand and evaluate207
how cholinesterase (ChE) inhibitors affect mice respiration with partial deficit in AChE (Nervo et al., 2019).208
Acetylcholine (ACh) is a well-known neurotransmitter in the central and peripheral nervous systems. It is209
also found at the neuromuscular junction (NMJ). ACh in synapses is hydrolyzed by acetylcholinesterase210
(AChE). ACh is also used by numerous non-neuronal cells to communicate (Grando et al., 2015). Inhibition211
of ChE changes the dynamic of ACh and thus may modify respiration at different physiological levels.212
To better understand the mechanisms, we have recorded the nasal and thoracic airflow of mice with213
different partial AChE deficits induced by injection of physostigmine, an inhibitor of ACHe, using a Double214
Chamber Plethysmograph (DCP), (Mailhot-Larouche et al., 2018). We recorded nasal and thoracic airflow215
from control mice (WT mice), PRiMA KO mice (PRiMA mice: AChE deficiency in cholinergic neurons of216
the brain and peripheral nervous systems (autonomic and enteric)) (Farar et al., 2012)); muscle KO mice217
(AChE1iRR; absence of AChE in skeletal muscles); ColQ KO mice (ColQ mice: no AChE anchoring in218
muscles and some tissues) (Bernard et al., 2011).219

As described in (Nervo et al., 2019), mice of different genotypes were exposed as follows:220

1. Phase 1: The mouse is placed in a DCP for 15 or 20 minutes to serve as an internal control.221

2. Phase 2: The mouse is removed from the DCP and injected with physostigmine.222

3. Phase 3: The mouse is placed back into the DCP, and its nasal flow is recorded for 35 or 40 minutes.223

3.2 Experiment224

In order to test our approach, we have run and evaluated the results of the following experiment:225

1. Creation of a data set.226

2. Extraction of training data set for inspiration/expiration.227

3. Computation of inspiration/expiration referent sequences.228

4. Symbolization of all signals in the data set.229

Step 1: Creation of a data set. Our data set includes the nasal airflow recording of 32 different mice.230
Among all recordings available from Nervo et al. (2019), we have selected 8 mice for each genotype:231
WT, PRiMA, AChE1iRR, ColQ. All mice were exposed to the same inhibitor: physostigmine. All signals232
were recorded at 2,000Hz and have been down-sampled to 250Hz. By default, the double chamber233
plethysmograph includes a bandpass filter, whose band limits are 0.250Hz and 35000Hz, which has not234
been modified.235

Step 2: Extraction of training data set for inspiration/expiration. On average, a mouse’s respiratory236
cycle lasts about 0.3 seconds. The original data set contains approximately 350,000 cycles, and therefore237
computing reference sequences (section 2.4) from the entire data set would have been time-consuming.238
Thus, for each recording, we extracted 1800 cycles that were evenly selected in time. This subsampling239
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corresponded to approximately 36 cycles per minute, resulting in a set of 57,600 cycles that were divided240
into an inspiration training data set and an expiration training data set.241

Step 3: Computation of inspiration/expiration reference sequences. Referent sequences were242
computed according to the algorithm presented in Section 2.4. The hyperparameters are presented in243
the following section. The learning is based on the inspiration/expiration training data set.244

Step 4: Symbolization of all signals in the data set. All recordings in the original data set are symbolized.245
The symbolization is based on the reference sequences learned from the training data sets.246

3.3 Hyperparameters247

The main parameters are presented below. Parameters for respiratory cycle detection have been set based248
on physician knowledge of the typical respiratory cycles. For the clustering algorithm, the number of249
clusters has been set arbitrarily and the Sakoe Chiba radius authorizes small dilatation.250

• Respiratory cycle detection (Step 1):251

• Prominence : 0.03 ml252

• Window length : 2 s253

• Minimum inspiration/expiration duration : 0.05 s254

• Maximum inspiration/expiration duration : 2 s255

• Clustering algorithm (Step 2, identical settings for inspiration and expiration):256

• Number of clusters: 5257

• Number of iterations for K-Means: 10258

• Sakoe Chiba radius: 0.01 s259

• Reference sequence length: 0.2 s260

• Symbolization (step 3):261

• Quantile threshold: 0.95262

A python implementation of the method is available on Github 1.263

4 RESULTS

In this section, we summarized the complete pipeline of our method. It is composed of three main steps:264

1. The first step consists in detecting of the respiratory cycles and extracting the inspiration/expiration265
sequences from the input data, Figure 2-A.266

2. The second step consists in computing a small number of reference sequences from the sets of267
inspiration/expiration sequences. The reference sequences represent groups of sequences with common268
properties to highlight typical inspiration/expiration behaviors, Figure 2-B.269

3. The third step consists in simplifying a recording using a symbolization based on the reference270
sequences extracted in Step 2, Figure 2-C.271
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Figure 4. Respiratory cycle map displays with nasal airflow (ml.s−1) on the left and nasal volume (ml)
on the right. Positive flow corresponds to inspiration and negative flow corresponds to expiration.

4.1 Categorization of the respiratory cycles272

We first aim to categorize breathing cycles, inspirations, and expirations. The limits of inspiration and273
expiration are unambiguously defined from the volume obtained by integrating the flow (Vijayaraghavan274
et al., 1993). We define a referent cycle as the association between a referent inspiration and a referent275
expiration. Considering K1 referent inspirations and K2 referent expirations, there exist K1K2 referent276
cycles. In order to compare them, we develop a map where each row corresponds to a referent inspiration277
and each column to a referent expiration. Each referent cycle is represented by an actual cycle selected as278
follows:279

• Among the identically labeled cycles in the training database, we select the cycle whose cumulative280
DTW distance (DTW distance to the referent inspiration + DTW distance to the referent expiration) is281
the smallest.282

• The respiratory cycle map can be displayed using either the nasal airflow or the nasal volume. In283
any case, the inspiration/expiration phases are matched, accordingly, to their attributed colors. For284
inspiration, the color scale goes from red to yellow; for expiration, it goes from blue to green.285

• Inspiration/expiration referent sequences are ordered in increasing order according to the average286
duration observed in each group. Therefore, as the number/letter increases, the average287
inspiration/expiration duration is longer. Visually, lighter colors (yellow/green) correspond to longer288
duration.289

In our experiment, we set the number of inspiration and expiration referent sequences to 5, as presented290
in Figure 4. Short duration cycles (A0, A1, B0, B1) are characterized by a nasal airflow of sinusoidal shape.291
All 25 of the resulting classes are used in the following sections to visualize and compare the respiratory292
cycles of mice of different strains before and after physostigmine injection.293
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Figure 5. (A): Respiratory Cycle map (RC map) built-up process. (B): Respiratory RC maps: All RC maps
are truncated at the threshold value of 20%. RC maps are grouped by genotype: WT, PRIMA, AChE1iRR,
ColQ. For each genotype, the two left columns and the two right collumns gathered RC maps respectively
before and after physostigmine injection. Numbers on RC maps correspond to the mouse id. The bottom
line corresponds to the average RC maps observed per genotype before and after drug injection. (C):
Average reference sequence polar plots: Polar plots are grouped by genotype. Inspirations are on the top,
and expirations are on the bottom. The values on each angular axis correspond to the average percentage of
time assigned to the associated reference sequence. The blue polygon corresponds to the values observed
before injection, and the red polygon corresponds to the values observed after the injection.
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4.2 Distribution of respiratory cycle categories294

In order to study the importance of each reference cycle for a given symbolic representation, we introduce295
a new visualization of the histogram that takes the form of a heat map. The respiratory cycle map (RC296
map) corresponds to a heat map where rows are inspiration symbols and columns are expiration symbols297
as presented in Figure 5-A. Thus, each cell corresponds to a referent cycle, and its value is set to the298
percentage of time assigned to that specific referent cycle. To ease the study of less frequent referent cycles,299
we use a thresholded version of the respiratory RC map where all reference sequences that represent more300
than 20 % of the total duration are assigned to the threshold value of 20 %. A RC map provides a quick301
understanding of the dominant respiratory behavior of a mouse. In addition, RC maps can be aggregated302
over a population, allowing comparisons of a mouse’s respiratory behavior to the average behavior.303

In Figure 5-B, RC maps are grouped by genotype: WT, PRIMA, AChE1iRR, ColQ. For each genotype,304
the two left columns gathered RC maps before injection, and the two left columns gathered RC maps after305
injection. The bottom line corresponds to the average RC maps observed per genotype before and after306
drug injection.307

In addition, we have created two conjoint polar plots, one for inspiration and one for expiration. Each308
angular axis corresponds to a referent sequence, and the value on each axis is equal to the percentage of309
time assigned to that specific referent sequence. These values are linked together to form a polygon. As for310
RC maps, the visualization can be done at the individual level or aggregated over a group of mice. This311
representation complements RC maps as it decorrelates inspiration from expiration, easing the study of312
both mechanisms independently as presented in Figure 5-C.313

4.3 Time line representation of respiratory cycle categories (bar codes)314

Previous representations give an overview of the respiratory behavior of a mouse or a population.315
Nonetheless, they do not offer insights into the temporal evolution of a mouse’s respiratory behavior when316
facing a stressor. This evolution can be read from the symbolic representation with proper visualization.317

To that aim, we construct a respiratory bar code for each mouse that includes the time information, as318
presented in Figure 6-B. The respiratory bar code is composed of two lines, the upper line represents319
the inspirations, and the lower line representing the expirations. The central white area corresponds to320
the period of inhibitor injection, and the light grey area corresponds to unpredictable cycles. Each line321
is composed of rectangles whose color refers to the associated reference sequence and whose length is322
proportional to the duration of the associated respiratory cycle.323

Figure 6-B presents respiratory bar codes of all mice in the data set. They are gathered by genotype,324
and mouse identification numbers are on the left of the bar codes. For each genotype, the left section325
corresponds to bar codes before injection and the right section to bar codes after injection.326

4.4 Statistical analysis of respiratory cycle categories327

RC maps provide visual comprehension of the heterogeneity in breathing behaviors and changes due328
to the presence of a stressor. In complement to the visual presentation, we provide a statistical analysis329
that compares the breathing behaviors between genotypes and the breathing responses to the presence of a330
stressor.331

1 https://github.com/thibaut-germain/DCP_Clustering
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Figure 6. Respiratory bar codes: Respiratory bar codes are gathered by genotype: (top,left): WT,
(bottom,left): PRIMA, (top,right): AChE1iRR, (bottom,right): ColQ. Numbers to the left of bar codes
correspond to the mouse id. For each genotype, the left section corresponds to barcodes before drug
injection and the right section to bar codes after injection. Grey areas in bar codes like mouse PRIMA-2
correspond to unpredictable cycles. Some experiments were shorter than others resulting in shorter bar
codes.

The first statistical test compares the respiratory cycle distribution of AChE-deficient mice (PRIMA,332
AChE1iRR, ColQ) with that of control mice (WT). The null hypothesis is that the cohort of AChE-deficient333
mice has the same respiratory cycle distribution as the cohort of control mice. The alternative hypothesis is334
different respiratory cycle distributions.335

The second statistical test compares the distribution of respiratory cycles for each genotype before and336
after drug injection. For the cohort of a given genotype, the null hypothesis is to have the same distribution337
of respiratory cycles before and after drug injection. The alternative hypothesis is different respiratory338
cycle distributions.339

In both cases, we implemented a multiple testing scheme with a false discovery rate (FDR) correction of340
5%, performing a Mann-Whitney U test for each type of respiratory cycle. Application of this test gives341
a map where each cell represents a type of respiratory cycle, with the row corresponding to the type of342
inspiration and the column to the type of expiration. A cell is colored black if the unit null hypothesis is343
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Figure 7. Multiple testing scheme with a false discovery rate (FDR) correction of 5%, performing a Mann-
Whitney U test for each type of respiratory cycle. A cell is colored black if the unit null hypothesis is rejected
after FDR correction and includes the corrected p-value of the associated unit test. (A): Statistical tests
comparing the distribution of respiratory cycles of control (WT) and AChE-deficient (PRIMA, AChE1iRR,
COLQ) mice before drug injection. (B): Statistical tests comparing the distribution of respiratory cycles
before and after drug injection for each genotype.

rejected after FDR correction. In each cell, we also displayed the corrected p-value of the associated unit344
test.345

All tests are rejected, Figure 7-A, and the number of unit tests rejected at 5% is for WT vs. PRIMA: 21,346
WT vs. AChE1iRR: 4, WT vs. COLQ: 3. Similarly, all tests are rejected, Figure 7-B, and the number of347
unit tests rejected at 5% is for WT: 15, PRiMA: 3, AChE1iRR: 3, COLQ: 3.348

5 DISCUSSION

This paper presents a new method to compare and quantify cyclic signals that may be particularly349
appropriate for biological investigations, such as respiratory signals. Rather than comparing cycles based350
on the ventilation descriptors, cycles’ shapes are compared to shape representations of most typical cycles.351
We will discuss the contributions and limitations of this new strategy by analyzing a part of recordings352
previously published (Nervo et al., 2019).353

5.1 Inspiration and expiration classes fit respiratory physiological control354

The classes learned with the new approach represent various respiratory profiles that carry biological355
meaning. We illustrate some respiratory profiles through their classes in Figure 8. The last 15 minutes356
before physostigmine injection represents mice’s baseline breathing behaviors. The control mice (WT)357
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Figure 8. Examples of typical respiratory behaviors. For each panel, the left column represents the referent
cycle, and the right column is an extract from a recording of up to 5 seconds where the reference cycle
is repeated continuously. Charts with a blue background are expressed in nasal airflow, and charts with
a yellow background are expressed in nasal volume. (A): Referent cycle B0. (B): Referent cycle B4.
Inspiration, expiration, and end-inspiratory pause (EIP) duration are illustrated. (C): Referent cycle C0.
(D): Referent cycle D0.

breathe with cycles of type A0 and B0. Figure 8-A shows 5 consecutive seconds of a raw signal with358
respiratory cycles of B0. After injection of physostigmine, the inspiration classes (A and B) are not changed359
for the control mice (WT), as shown with the polar plot (Figure 5-C). However, the expiration class360
changes from type 0 to type 2,3,4. Raw signals of 5 consecutive seconds of classes B4 are presented in361
Figure 8-B. The profile of these classes shows a long pause when the lungs are inflated. They correspond to362
post-inspiratory pauses. They were analyzed in Nervo et al. (2019), and the authors quantified the duration363
of these pauses. The new approach captures significant respiratory behaviors making previous results364
apparent with the new representation: for control mice (WT), post-inspiratory pauses appear after inhibitor365
injection.366

The approach also presents details about the inspiration dynamic of ColQ mice. Indeed, the cycles367
of ColQ mice before injection are grouped into types C0 and D0, which we present in Figure 8-(C,D).368
Inspiratory classes C and D are characterized by a nasal airflow that enters in two phases. The two phases in369
class D are distinctive. Compared to D, the separation between phases is less visible in C. The ColQ mouse370
is a model of congenital myasthenic syndrome with AChE deficit at the neuromuscular junctions. This371
mouse shows an impairment of motor control, which could be reflected during the motor control required372
for a smooth inspiration.373

Bar codes (Figure 5-B) also validate inspiration and expiration classes. A bar code represents the374
symbolization of a raw signal as a timeline where inspirations and expirations are colored accordingly375
to their classes. Bar codes reveal the dynamics of respiratory behaviors and their changes. For example,376
inspiration classes for control mice (WT) after physostigmine injection are almost unchanged. On the377
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Figure 9. Box plots of the respiratory cycle descriptors: inspiration/expiration time and
inspiration/expiration volume. Each box plot represents a referent sequence. A box represents the first
quartile (Q1), median, and third quartile (Q3). The lower whisker corresponds to the minimum value
observed, and the upper whisker is above the third quartile by 1.5 interquartile range (IQR: Q3-Q1).

contrary, their expiration classes change significantly after a latent period. This dynamic is consistent with378
results in Nervo et al. (2019) where the mean frequency per minute of respiratory cycle decreases after the379
injection of physostigmine for control mice (WT). The frequency decrease corresponds to an increase in380
the duration of the post-inspiration pauses per min. Through the bar codes, it is possible to visualize the381
appearance of expiration classes 3 and 4 after injection with remarkable precision.382

The inspiration and expiration classes have been constructed without prior knowledge of mice’s breathing383
behaviors. Nonetheless, the classes present differences that can be interpreted in terms of physiological384
modifications. For instance, some of the expiration classes represent post-inspiratory pauses. New385
inspiration classes have also been described, probably related to the motor controls dynamics during386
the active ventilation phase.387

5.2 Classes reveal heterogeneity: an observation masked by the averaging of algebraic388
descriptors389

Analyses on a small cohort can be biased if individual responses are heterogeneous. Unfortunately, it is390
often difficult to recognize this heterogeneity through some descriptors. The new symbolization, based on391
typical inspiration/expiration, the visualization and the quantification tools we proposed, offer perspectives392
on this critical issue in biology. For example, it is apparent on individual RC maps and bar codes that393
control mice (WT) present homogeneous respiration; the respiration cycle types are A0 and B0. After394
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injection of AChE inhibitor, the RC maps and bar codes of control mice WT-1,2,6,7 show that they follow395
the same evolutionary dynamics. Nevertheless, mice WT-3,8 present different dynamics, and mice WT-4,5396
died during the experiment. Thus, we can conclude that mice adapt differently to cholinesterase inhibition397
by physostigmine. In addition, the tests highlight changes that are significantly different.398

We proposed in Boudinot et al. (2009) and Nervo et al. (2019) that mice with partial AChE deficiency399
were remarkably adapted to AChE deficit in the brain, autonomic nervous systems, and muscles. Indeed,400
the most frequent respiratory cycles before injection are composed with the inspiration of type A,B,C and401
the expiration of kind 0,1,2. Looking at Figure 9, these reference sequences share similar duration and402
volume. Therefore, it is impossible to differentiate the genotypes based on inspiration/expiration duration403
or volume.404

The present study shows that the distributions of inspiration and expiration classes on AChE1iRR mice405
are similar. AChE1iRR mice do not have AChE in skeletal muscle. These mice show a high homogeneity406
of adaptation despite muscle weakness. In contrast, PRiMA mice, which have AChE deficiency in the brain407
and autonomic nervous systems, adapted well to AChE inhibition, but showed heterogeneous respiratory408
behavior. The heterogeneity is apparent in inspiration and expiration classes, which suggests the possibility409
of different respiratory behaviors to cope with AChE deficit in the nervous system. The cohort of ColQ410
mice also presents heterogeneity in respiratory behaviors, specifically for inspiration. As discussed, the411
inspiration of ColQ mice is characterized by types C and D. In contrast, the inspiration of other genotypes412
is characterized by types A and B. While ColQ and AChE1iRR mice have similar AChE deficiency in413
neuromuscular junctions, AChE1iRR mice adapt better than ColQ mice which also have AChE deficit in414
other tissues. This result suggests that AChE deficit in skeletal muscle is insufficient to affect these mice’s415
inspiration.416

If the respiratory adaptations are different, it is not surprising that the consequences of the injection of417
physostigmine are so variable. Visualization of inspiration and expiration classes, either in RC maps or bar418
code, makes it possible to account for this diversity. After injection of physostigmine, the changes tend to419
affect inspiration in AChE1iRR and ColQ mice, whereas expiration is more affected in WT and PRiMA420
mice.421

In summary, representing respiratory cycles by classes sharing similar shapes reveals a diversity of422
unsuspected respiratory behaviors that were not identifiable with descriptors deduced from the airflow. This423
rich information is synthesized in graphical representations highlighting how mice respond differently to424
cholinesterase deficits or inhibition.425

5.3 Inspiration and expiration classes evoke distinct biological processes.426

Inspiration and expiration classes are defined without prior knowledge of underlying biological processes.427
Inspiration classes A and B represent a regular inspiration phase, while classes C and D represent an428
inspiration phase with a more or less significant pause. The pauses in category C are very short and always429
during inspiration; they probably correspond to a motor impairment during lung inflation (the main action430
of the diaphragm, a powerful muscle) or by a fine control of the glottis. The longer pauses of class D may431
occur during the air inflow and are probably similar, in nature, to class C. In contrast, the long pauses of432
Class E correspond to a sort of pause before the air enters the lungs. From a physiological point of view,433
these pauses could correspond to a delay in the glottis’s active opening, which is required to allow air to434
enter into the trachea. Two situations can lead to the glottis remaining closed: the cessation of muscle435
contractions that control the glottis opening or the spasm (cramp) of the muscles that control the closing436
of the glottis. Expiration class 0 represents a regular and probably passive phase of expiration. Classes437
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2,3 and 4 start with a post-inspiratory pause whose duration increases progressively from category 2438
to category 4. These post-inspiratory pauses are well described in the literature and appear in different439
physiological conditions. They appear when it is necessary to increase the air pressure in the lungs (short440
pauses) or as reflexes (long pauses), such as those resulting from inhaling molecules that irritate the upper441
airways (Dutschmann et al., 2014).442

From these results we can conclude that inspiration and expiration classes learned from a subset of443
recordings selected from (Nervo et al., 2019) carry interpretable physiological meaning. It is important444
to note that these classes are specific to the experiment. For instance, applying our method to a set of445
signals presenting bronchoconstrictions will likely lead to classes differentiating the severity/variety of446
constrictions in a finer way than using the EF50 metric (Glaab and Braun, 2021).447

5.4 Limits and future work448

Our approach to analyzing respiratory signals is based on learning typical inspirations and expirations,449
called reference sequences. Currently, the number of referent sequences is arbitrarily set by the user. By450
doing so, the user chooses the degree of detail incorporated in the symbolization: adding referent sequences451
divides typical breathing behaviors into subgroups with minor variations. In that manner, reference452
sequences carry meaningful physiological information for the user. Nevertheless, choosing a good number453
of reference sequences can be complicated and time-consuming without knowledge of respiratory behavior.454
In such cases, several heuristics based on mathematical criteria exist to define the number of reference455
sequences automatically (Kodinariya and Makwana, 2013). In any case, these heuristics can be used as a456
starting point to properly define the number of clusters in light of the experiment objective.457

In the current work, we limited ourselves to static descriptors of reference sequences (RC map, polar plot)458
and visual interpretation of the breathing behavior evolution over time (bar plot). Nevertheless, breathing459
behavior dynamics can also be quantified using the proposed symbolization of recordings and applying460
symbolic dynamics theory (Lind and Marcus, 2021; Morse and Hedlund, 1938). Symbolic dynamic theory461
has been developed to study how a system’s configurations change over time and how similar initial states462
can grow dissimilar.463

During the experiment, we only symbolized recordings included in the training data set. By doing so, we464
guaranteed that the most common behaviors present in the recordings were taken into account during the465
learning step. We do not recommend symbolizing on other recordings as some typical behavior might be466
negelcted. In future work, we would like to investigate the use of a hierarchical clustering algorithm on a467
large data set composed of recordings with various experimental conditions. By doing so, we would like to468
create a universal referential of typical behaviors usable across experiments that can adapt to the level of469
detail required by selecting a symbolization directly from the hierarchy.470

5.5 Prospective use471

In this work, we have limited ourselves to plethysmograph signals recorded with DCP, but the method and472
it can easily be extended to head-out plethysmography (Bruggink et al., 2022) as well as to other biological473
systems. Indeed, our approach relies on accurate segmentation of plethysmograph signals, allowing relevant474
studies of inspiration and expiration. Any biological system which results in the recording of a cyclic475
signal can use our approach with proper segmentation. For instance, in the case of electrocardiogram476
signals, we could combine our approach with a heartbeat detection algorithm (Zong and Jiang, 2003;477
Pan and Tompkins, 1985) to detect and represent patterns of diseases like arrhythmias, heart attacks,478
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cardiomyopathy, and coronary heart disease. Then, the symbolization of these signals could offer insightful479
information about the underlying dynamics of such diseases.480
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1 PEAK DETECTION ALGORITHM

In the following, let x = (x1, ...xT ) ∈ RT be a univariate sequence.560
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Peak detection algorithm consists in finding all local maxima and removing those whose prominence561
is below a prominence threshold. A data point xt is considered as a local maximum if xt > xt−1 and562
xt > xt+1. Considering a user-defined window size wlen and a local maximum xu, its prominence is563
computed as follows:564

1. Finding left prominence: Denote su the last time point such as the sequence (xlu , ..., xu−1), where565
lu = max(0, u− ⌊wlen/2⌋), intersects the horizontal line y = xu. If there is no intersection, su = lu.566
Left prominence is defined as: plu = xu −min(xsu , ..., xu−1).567

2. Finding right prominence: Denote eu the first time point such as the sequence (xu+1, ..., xru), where568
ru = min(T, u+ ⌊wlen/2⌋), intersects the horizontal line y = xu. If there is no intersection, eu = ru.569
Right prominence is defined as: pru = xu −min(xu+1, ..., xeu).570

3. Set prominence: Prominence of the local maximum xu is defined as pu = max(plu, pru)571

Figure 10 illustrates the prominence computation. Considering a minimum prominence pmin, only local572
maxima with a prominence greater than pmin are considered as peaks. This method is implemented in573
Python Scipy package2.574

Figure 10. The prominence is leftu. There is no intersection between the horizontal line and the curve on
the right side, the right search space is bounded by the user defined window size.

2 Dynamic Time Warping (DTW)

Considering two sequences x ∈ Rm and y ∈ Rn, DTW is solution of the optimization problem:575

DTW(x,y) = min
W∈Wα

mn

√√√√ m∑
i=1

n∑
j=1

Wij |xi − yj |2 (4)

whereWα
mn = {W ∈ Wmn|Wij = 0 if |i− j| > α} are all the warping matrix which respect Sakoe-Chiba576

constraint parametrized by α > 0. A warping matrix W ∈ {0, 1}m×n is a monotonic non-linear mapping577
between x and y such that xi is mapped to yj if Wij = 1. W path starts from the upper-left corner (1,578
1) and connects the lower-right corner (m, n) using only→, ↓,↘ moves. A warping matrix minimizing579
Equation 4 is called an optimal warping matrix.580

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find peaks.html
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3 BATCH STOCHASTIC SUBGRADIENT DTW BARYCENTER AVERAGING
(BS-DBA)

In the following, let X = {x(1), . . . ,x(N)} and FX(y) = 1
N

N∑
i=1

DTW2(y,x(i)) where y ∈ RL. Then, the581

subgradient of FX at point y is:582

∇FX(y) =
2

N

N∑
u=1

(
V (u)y −W (u)x(u)

)
(5)

where W (u) ∈ Wα
Ln is the optimal warping matrix between y and x(u) as defined in Appendix 2 and V (u)583

is a diagonal matrix in NL×L such that:584

V
(u)
i,i =

n∑
j=1

W
(u)
ij (6)

BS-DBA is presented in Algorithm 1. If the initialization sequence yini is not given, it is set to a vector of585
size L sampled from an uniform distribution on [0, 1]. The learning rate scheduler η is taken from Schultz586
and Jain (2018):587

η(t) =

{
η(t−1) − (η0 − η1)/β if 1 ≤ t ≤ β

η1 otherwise
(7)

where η0 = η(0) = 0.05, η1 = 0.01, nb is the batch size and β = ⌊N/nb⌋+ 1 is the number of iteration for588
one epoch. The learning rate only decreases during the first epoch then it remains fix to η1. The algorithm589
stopping criteria is the total number of iterations.590
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Algorithm 1 BS-DBA
Parameters: nepochs the number of epochs, L the length of the averaging time-series, nb the size of a
batch, nit the number of iterations, η the learning rate scheduler
Inputs: X = (x(1), . . . ,x(N)) a set of time-series, yini (optional) the starting sequence
Output: y∗ the best average time-series

if yini is given then
y(0) ← yini

else
Initialize y(0) ∈ RL

end if
Initialize best solution y∗ ← y(0)

for epoch = 1, . . . , nepochs do
Batches← randomly partition X in batches of size nb
for batch ∈ batches do

for x(k) ∈ batch do
P (k) ← Optimal warping path between y(t−1) and x(k)

W (k) ← Warping Matrix of P (k)

V (k) ← Valence Matrix of P (k)

end for
Update temporal solution:

y(t) ← y(t−1) − η(t)
2

nb

nb∑
k=1

(
V (k)y −W (k)x(k)

)
Update best solution such that: y∗ = min

(
FX(y∗), FX(y(t))

)
if t ≥ nit then

break
end if

end for
end for
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