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Abstract— The study of plethysmography time series is cru-
cial to better understand the breathing behavior of mice, in
particular the influence of neurotoxins on the respiratory sys-
tem. Current approaches rely on a few respiratory descriptors
computed on individual breathing cycles that fail to account
for the variety of breathing habits and their evolution with
time. In this paper we introduce a new procedure for the
automatic analysis of plethysmography signals. Our method
relies on a new and robust segmentation of respiratory cycles
and a DTW-based clustering algorithm to extract the most
typical respiratory cycles (called reference sequences). We can
then create a symbolic representation of any new recording by
matching respiratory cycles to their closest reference sequence.
This new representation is a visual and quantitative tool
to assess the breathing behavior of mice and its evolution
with time. Our method is applied to plethysmography signals
collected on mice with two different genotypes and exposed to
a neurotoxin.

Clinical relevance This article proposes a novel approach to
study plethysmography data. Our algorithm is able to accu-
rately extract clinically meaningful respiratory cycles and the
associated ventilation patterns descriptors such as tidal volume
and inhalation/exhalation duration. In addition, thanks to the
associated symbolic representation of signals, the temporal
evolution of respiration is easily quantified. This opens a new
research path to study the often slowly evolving and subtle
influence of neurotoxins on the respiratory system.

I. INTRODUCTION

Measuring respiratory function of conscious and spon-
taneously breathing animals is essential in many clinical
studies on drug effects on the respiratory system [1]. Double
chamber plethysmography (DCP) [2] is composed of two
hermetically isolated compartments where the animal’s head
is in one chamber, its thorax and its rear in the other
one. It independently tracks the nasal airflow and thoracic
movements of a constrained animal. DCP is a relevant
approach to evaluate ventilation mechanics of the respiratory
system, and it provides insights on both ventilation function
and lung function [3].

A respiratory cycle is defined as an inhalation followed
by an exhalation [4]. The beginning of each phase is physi-
ologically identifiable:

• tin corresponds to the beginning of the inhalation phase,
when the mouse starts to breathe air in and the lungs
volume is minimal,

• tout corresponds to the beginning of the exhalation
phase, when the mouse starts to breathe air out and
the lungs volume is maximal.
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Fig. 1. Nasal airflow (top) and lung volume (bottom). During inhalation,
airflow is positive (blue) and during exhalation, airflow is negative (pink).
An inhalation starts at tin, when the nasal volume is locally minimal.
An exhalation starts at tout when the nasal volume is locally maximal.
A respiratory cycle starts at tin and ends at the following tin.

These phases and associated events are illustrated on Fig-
ure 1.

From plethysmography, respiratory function is commonly
evaluated using several ventilation features (see [5], [6], [3]
and Section III-B). While quantifying ventilation changes
and their occurrences, these parameters provide few insights
into physiological changes as they are often averaged on
long periods of time. Recently, a new method based on
machine learning has intended to leverage this issue [7]
from whole-body plethysmography (WBP) signals, by using
feature-based clustering of respiratory waveforms.

In this study, we introduce a new method for respiratory
cycle analysis in the case of DCP data, which learns inter-
pretable representations of typical respiratory cycles. These
representations mirror distinctive breathing behaviors, and
for a given recording, their succession in time provides
insights into physiological changes. Our method is based
on tools from machine learning for time-series: the K-
Means clustering algorithm combined with the measure of fit
Dynamic Time Warping (DTW). DTW compares time-series
of different lengths and is invariant to a pattern’s contraction
or dilatation. This property is of particular interest to manage
inter-individual variability. In addition, our algorithm relies
on a new and robust algorithm to identify the starts and ends
of inhalation and exhalation phases from a nasal airflow
signal. As a significant difference from [7], our method
evaluates the similarity between respiratory cycle patterns
directly from shape variation of inhalations and exhalations
rather than learned features, thus providing a more robust
study of the respiratory physiological activity.

II. METHOD

Our method is composed of three main steps:
Step 1: Detection of the respiratory cycles and ex-

traction of the inhalation/exhalation sequences. The first
step of the process consists in extracting the respiratory



cycles from the input data. Each cycle is composed of two
phases: inhalation and exhalation. A segmentation algorithm
isolates the two periods. In a nutshell, given a raw signal
s, the first step of our method outputs a set of inhalation
sequences {s(1)in , ..., s

(Ns)
in } and a set of exhalation sequences

{s(1)out, ..., s
(Ns)
out }, where Ns is the total number of cycles

observed in the original signal s.
Step 2: Computation of the reference sequences

through an unsupervised clustering procedure. The sec-
ond step consists in computing a small number of reference
sequences from the sets of inhalation/exhalation sequences.
The main idea behind this is to group sequences with
common properties to highlight typical inhalation/exhalation
behaviors. To that aim, a clustering algorithm (K-means)
is used, combined with a measure of fit between signals
that is able to compare sequences of different durations,
namely the Time-Normalized DTW (TN-DTW), a robust
variant of the DTW. The output of this step is a set of
inhalation reference sequences {rin(1), rin

(2), . . . } and a set
of exhalation reference sequences {rout(1), rout(2), . . . }.

Step 3: Characterization and symbolization of new
recordings based on the extracted reference sequences.
Consider a new recording s′. The objective is to automat-
ically characterize this recording using the reference se-
quences extracted in Step 2. First, the signal s′ is segmented
through the procedure already described in Step 1. Then,
each of the Ns′ inhalation/exhalation sequences detected in
s′ is assigned a symbol that represents the reference sequence
that is closest considering the measure TN-DTW.

A. Detection of the respiratory cycles and extraction of the
inhalation/exhalation sequences

As mentioned previously, nasal airflow suffers from noise,
making current inhalation and exhalation phases detection
methods unreliable. Inaccurate detection then leads to biased
descriptors and eventually to false experiments conclusions.
We propose an algorithm that looks for local minima and
maxima of the nasal volume (instead of airflow). Let s denote
a raw nasal airflow.

First, the lung volume v is computed from the nasal
airflow s. This can be done by numerical integration:

vt :=

(
t∑

u=1

su

)
− (ât+ b̂) (1)

where â, b̂ ∈ R are such that
∑

t vt = 0 and
∑

t tvt = 0. The
affine function t → ât+ b̂ removes the linear trend appearing
during the integration process.

Next, the inhalation start times tin and the exhalation start
times tout are identified using a peak-searching procedure
that detects local minima, respectively maxima, of the nasal
volume signal v. To ensure an alternation between inhalation
and exhalation, the algorithm first searches for all local
minima (corresponding to the starts of the inhalations) and
then searches for the maxima between two consecutive local
minima. Once all inhalation/exhalation start times tin and
tout are extracted, the original nasal airflow signal s is split

into a set of inhalation sequences {s(1)in , ..., s
(Ns)
in } and a set of

exhalation sequences {s(1)out, ..., s
(Ns)
out }, where Ns is the total

number of cycles observed in the original signal s. The local
minima search uses SciPy’s (scipy.org) implementation; in
our setting, only local minima tin with a prominence above
0.03 mL in a window of 2 seconds are kept.

B. Computation of the reference sequences

Provided a set of inhalation/exhalation sequences, K ref-
erence sequences are computed. Each represents a typical
respiratory behavior. In the following, X = {x(1), . . . ,x(N)}
denotes a set of sequences (either inhalation or exhalation)
of potentially different durations.

1) Clustering algorithm: The K reference sequences
from the set X are computed with the well-known unsu-
pervised clustering procedure called K-Means. This algo-
rithm creates K non-overlapping groups {C(1), . . . , C(K)}
of sequences with common properties. Roughly, K-Means
is a two-step iterative refinement technique that assigns each
sequence to the closest current centroid and then updates
each centroid with regard to the new assignments. A centroid
is a reference sequence r(i) which corresponds to the average
sequence of the cluster C(i). Two crucial ingredients of the
K-means algorithm are the measure of fit that is used to
assign each sequence to a cluster and the procedure used to
compute the reference sequences of each cluster. Although
most publications usually use the Euclidean distance, this is
not possible in our context since the sequences to cluster do
not have the same duration. Also, the measure of fit must be
invariant to some sequence properties: dilatation/contraction,
amplitude offset, amplitude shift, time fluctuation, noise and
outliers. For the experiments (Section III), the number of
iterations of the K-means is set to 10.

2) Preprocessing: In order to be invariant to amplitude
offset and shift, and to improve the robustness to outliers, all
sequences are first centered to zero mean and scaled to unit
variance. Then the discrete first order derivative is computed:

∆xt =


x2 − x1 if t = 1,
(xt−xt−1)+((xt+1−xt−1)/2)

2 for t = 1, ...T − 1,
xT − xT−1 if t = T .

(2)
3) Time Normalized Dynamic Time Warping (TN-DTW):

At each iteration, the K-Means algorithm assigns each se-
quence to the closest centroid. The distance is computed
using TN-DTW which is a variant of DTW [8]. Both
measures are invariant to time fluctuation and can compare
sequences of different durations. Unlike DTW, TN-DTW is
not affected by the length of the sequences. The relationship
between these measures is given by:

TN-DTW(x,y) =
1√

m+ n
DTW(x,y) (3)

where x ∈ Rm and y ∈ Rn. DTW is computed in O(mn)
in time and space using dynamic programming. Computation
time is reduced by using a Sakoe-Chiba constraint that prunes
the set of possible matchings between samples [8]. This
constraint is set to 20ms in the remaining of the article.

https://scipy.org/


Intuitively, TN-DTW considers as highly similar (almost
zero distance) two sequences of a given phenomenon occur-
ring at different speeds. This property is of particular interest
for our problem since some mice may inhale or exhale
faster than others. To do so, TN-DTW finds an optimal
mapping between a query sequence and a referent sequence
by locally stretching or contracting the time axis. TN-DTW
outputs the time normalized cumulative sum of the mapping
pairwise distances. In addition to invariance to amplitude,
shift and offset, the combination of the pre-processing and
TN-DTW ensures robustness against time fluctuation, noise
and outliers.

4) Time-series averaging: Finding an average sequence is
an important sub-routines of K-Means algorithm. Indeed, the
quality of each cluster is highly dependent on the quality of
its centroid [9]. At each iteration, all sequences in the data
set X are assigned to their closest centroids {r(1), . . . , r(K)}.
Then, each centroid is updated with the average of its
assigned sequences, computed as follows.

For any set {x′(1), . . . ,x′(N ′)} of N ′ sequences, the
average, with respect to the TN-DTW, is the solution of the
following optimization problem:

argmin
y∈RL

1

N ′

N ′∑
i=1

TN-DTW2(y,x′(i)) (4)

where L > 0 is the average duration of the sequences x′(i).
Accurately and efficiently solving Problem 4 is not trivial.

Traditional averaging methods cannot deal with the non-
linear mapping between sequences of potentially different
durations. A recent work [10] uses the subdifferentiability
property of the function to optimize to develop a stochastic
subgradient descent algorithm (S-DBA). For a trade-off be-
tween accuracy and speed, we implemented a batch version
of S-DBA called BS-DBA.

C. Characterization and symbolization of new recordings

For a new recording s′, we first perform the segmenta-
tion process described in Section II-B in order to extract
the inhalation/exhalation sequences. Then, we use a 1-NN
(nearest neighbor) algorithm to assign each sequence to the
reference sequence, which is the closest to it, in the sense
of the TN-DTW measure. This procedure yields a symbolic
representation of s′, where each respiratory cycle is replaced
by a symbol composed of a letter (which specifies the type
of inspiration) and a number (which specifies the type of
expiration).

III. RESULTS AND DISCUSSION

A. Data

Our method is applied on a subset of data from an exper-
iment that studies the impact of some neurotoxins (acetyl-
cholinesterase (AChE) inhibitor) on the respiratory system
of mice [5]. Mice of different genotypes were exposed to
different AChE inhibitors. For each mouse, the manipulation
was as follows:

1) Phase 1: The mouse is placed in a DCP for approxi-
mately 15 minutes to serve as a baseline.

2) Phase 2: The mouse is removed from the DCP and
exposed to AChE inhibitor.

3) Phase 3: The mouse is placed back into the DCP and
its breathing was recorded for 35 minutes.

Adult male and female mice were maintained on a mixed
B6D2 genetic background. Before starting any experiment,
they were housed for 7 days, in an environment maintained
at 23 ± 0.5 °C, 38-41% humidity, under a 12-hour light/dark
cycle, with light provided between 7 am and 7 pm. All
experiments were performed in accordance with the Council
of European Committees Directive (86/609/EEC) and were
approved by the Paris Descartes University Ethics Committee
for Animal Experimentation (CEEA34.EK/AGC/LB.111.12).

In this study, a total of 12 mice, 6 wild type (WT) and 6
with Colq KO (COLQ) genotype [11] are selected. All were
exposed to the same AChE inhibitor: physostigmine. The
train set is composed of 5 WT and 5 COLQ. The remaining
is used as a test set for symbolization. All recordings are
sampled at 2000Hz and only parts corresponding to Phases
1 and 3 of the manipulation are considered. The training set is
composed of 4000 respiratory cycles: 200 from Phase 1 and
200 from Phase 3 are randomly sampled for each mouse.
Respiratory cycles are detected with our procedure, see
Section II-A.

B. Description of the reference inhalation/exhalation se-
quences

For all experiments, the number of reference sequences is
5 for both inhalation and exhalation sequences. Figure 2-a
and Figure 2-b display the learned reference sequences for
the inhalation and exhalation phases, respectively. As well
as a letter or a number, a unique color is attributed to each
cluster/references sequence. The length of each reference
sequence is set to the average length of sequences within the
associated cluster. Additionally, each reference sequence is
scaled by the average standard deviation of sequences within
the associated cluster. Each inhalation/exhalation cluster is
described with common respiratory pattern descriptors to
complete the analysis. To ease comparison, we used polar
plots for visualization (Figure 2-c / Figure 2-d) and the
descriptor data set is normalized before averaging for each
cluster. All following descriptors are widely used in the
literature [3]:

• Inhalation/exhalation time (Ti/Te, s): inhala-
tion/exhalation duration,

• Peak inhalation/exhalation flow (Pif/Pef ml/s) : maxi-
mum/minimum flow during the inhalation/exhalation,

• Nasal tidal/exhalation volume (NTV/NEV, ml):
nasal volume of air inhaled/exhaled during
inhalation/exhalation,

• Active inhalation/exhalation (AI/AE, s): duration of
the period which starts when the flow reaches 5%
of the Pif/Pef and ends at the beginning of the next
exhalation/inhalation,



(a) (b)

(c)

(d)
Fig. 2. Nasal airflow of the learned inhalation reference sequences (a) and exhalation reference sequences (b). (c) Inhalation cluster polar plot. (d)
Exhalation cluster polar plot. Inhalation descriptors: active inhalation (AI), end exhalation pause (EEP), nasal tidal volume (NTV), peak inspiration flow
(Pif), inhalation time (Ti). Exhalation descriptors: active exhalation (AE), end inhalation pause (EIP), nasal exhalation volume (NEV), peak exhalation flow
(Pef), exhalation time (Ti).

• End inhalation/exhalation pause (EIP/EEP, s): duration
of the period between the inhalation/exhalation start and
active inhalation/exhalation start.

As shown on Figure 2-a, the learned inhalation reference
sequences exhibit different behaviors. This fact is confirmed
by the respiratory descriptors (Figure 2-c). For instance,
Sequence D stands out when looking at both the graph and
the descriptors. Indeed, it has a longer duration (0.25s) with
a low airflow at the beginning and a maximum at the end,
and has the largest Ti, EEP and Pif. (Recall that a low
airflow means that the mouse has trouble breathing.) In
contrast, Sequence C is shorter (less than 0.2s) but reaches
its maximum faster and airflow remains high for most of the
sequence. This is in accordance with the fact that it has in the
largest NTV (inhaled volume) and AI (active inhalation) of
all learned sequences. Sequence B is also striking (compared
to sequences of same duration such as A and E) as it
has a low airflow and reaches its maximum at the end,
similarly to Sequence D. Unsurprisingly, the associated NTV
is the lowest of the learned sequences. As for the exhalation
sequences, two groups of reference sequences can be seen
on Figure 2-b: those with a long pause (very low airflow)
at the beginning (Sequences 2 and 3) and those without (1,
3, and 5). The classical respiratory descriptors (Figure 2-d)
cannot discriminate easily the two groups. They only notice
that Sequences 2 and 3 are longer, but do not highlight the
pause. To conclude, most of the learned reference sequences
are associated with distinct behaviors according to the usual
descriptors. Nevertheless, a few are not clearly distinguished
by the descriptors, while our algorithm classify them as
different, yielding a richer range of behaviors which the
respiratory descriptors cannot describe.

C. Relevance of the symbolization process

Figure 3 provides a visualization of symbolic representa-
tion before and after drug injection for all mice present in
the data set. For the sake of conciseness, only 10 minutes
are displayed for Phase 1, and up to 25 minutes for Phase
3. Each bi-colored line is one mouse symbolization, where
the upper line corresponds to the inhalations (warm colors)
and the lower line to the exhalations (cold colors).

Such visualization allows for an overall understanding of
the diversity of breathing behaviors and changes in breathing
dynamics when facing stressors. In this experiment, Figure 3
shows, for instance, that each learned reference sequence
is predominant for a specific genotype before or after drug
injection.

Before injection, the breathing behavior of COLQ mice is
characterized by the absence of pause: the respiratory cycle
C5 is predominant. Sequence C suggests a healthy inhalation:
the volume of air inhaled is optimal (large NTV) while the
effort is minimum (small Pif). After injection, C degrades
to an alternation between periods of mostly B sequences
and others of mostly D sequences. Both B and D suggest
difficulties to inhale: B has a short duration (Ti) and a small
inhalation volume (NTV), meaning that the mouse inhales
superficially, and D has a long duration (Ti) and a pause
before inhalation (EEP). Several physiological phenomena
can cause such a behavior, e.g. a blocked diaphragm. After
injection, exhalation Sequences 1 and 3 become frequent.
Both have a short duration (Te), and a small exhalation
volume (NEV) compared to 5. Sequence 3 is prevalent for
one mouse after injection (5th COLQ mouse). The clustering
algorithm has caught an individual behavior that is charac-
teristic of this mouse.



Fig. 3. Symbolic representation timeline. A bi-colored line is one mouse symbolic representation, the upper line corresponds to the inhalations (warm
colors) and the lower line to the exhalations (cold colors). A color refers to the associated reference sequence in Figure 2. Respiratory cycles are stacked
in timely order according to their length. 10 minutes before drug injection are symbolized and it goes up to 25 minutes. Last symbolization of each group
corresponds to the test mouse.

WT mice breathing behavior is less sporadic compared
to COLQ mice. Exhalation behavior is mainly characterized
by Sequences 4 and 5. Inhalation A and C are prevalent in
all recordings. After injection, pauses start to appear (Se-
quence D). We can observe an alternation of inhalation with
and without pause. As mentioned previously, Sequences A
and E look similar based on their descriptors (Figure 2-c)
but it is noticeable that while A occurs at any time, E is
only present after drug injection. Compared to A, E reaches
a plateau whose flow is lower than the maximum flow of
A (Figure 2-a), suggesting that the drug injection induces
the appearance of bronchoconstriction. It refers to inhaling
difficulties due to the bronchus’s constriction: the nasal
airflow is limited. Pattern comparison suggests a significant
physiological change that could have been difficult to catch
with respiratory descriptors.

Both COLQ and WT develop a diversity of breathing
behavior to the drug injection. Among others, we observed
alternating periods composed of either long or short inhala-
tion and exhalation. Studying breathing behavior changes
with statistical analysis of respiratory descriptors may lead to
biased results due to the fast-changing dynamic of behaviors.
Indeed, taking the average inhalation or exhalation duration
per minute would hide these alternations. The fast-changing
dynamic could be analyzed more precisely by taking advan-
tage of the symbolic representation.

IV. CONCLUSION
In plethysmography, the pattern comparison from the

DTW-based clustering procedure complements the classical
analysis: it highlights respiratory behaviors not detectable
with the descriptors. The reference sequences display inter-
pretable information and are related to ventilation parameters
of well-established models in the literature. The symbolic
representation paves the way for an accurate analysis of
rapidly changing behaviors. The presented work could be

extended to similar plethysmography data, in particular opti-
cal plethysmography, which is used to monitor human blood
flow.
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