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ABSTRACT

Motif Discovery involves identifying recurring patterns and locat-
ing their occurrences within a time series without prior knowledge
about their shape or location. In practice, Motif Discovery faces
several data-related challenges, leading to various definitions of
the problem and multiple algorithms addressing these challenges
to different extents. However, there has been no systematic evalu-
ation and comparison of these diverse approaches. Consequently,
this paper presents a comprehensive literature review covering
data-related challenges, motif definitions, and algorithms. We also
analyze the strengths and limitations of algorithms carefully cho-
sen to represent the literature diversity. The analysis is structured
around key research questions identified from our review. Our
experimental findings provide practical guidelines for selecting
Motif Discovery algorithms suitable for a given task and suggest
directions for future research.
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1 INTRODUCTION

Time Series are prevalent in many scientific and industrial do-
mains [13, 56]. Formally, a time series is a sequence of time-ordered
real-valued samples. The samples can correspond to different phys-
ical quantities, such as temperature and pressure [6], electricity
consumption [59], or human pose [13]. Several tasks have emerged
from the growing desire to analyze time series like classification [4],
clustering [57], anomaly detection [58, 68], and Motif Discov-
ery [10, 67]. The latter involves discovering recurring patterns,
known as motifs, within a time series. Beneficial for explanatory
purposes, this task can also be a first step toward subsequent analy-
sis. For instance, classification or clustering of long-time series may
be impractical but can be simplified by extracting representative fea-
tures, such as motifs. Such motifs usually represent temporal events,
such as heartbeats in an electrocardiogram [23] or the electrical
consumption of an appliance in a smart-meter series [59].
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In practice, time series raises several challenges when perform-
ing Motif Discovery. For instance, occurrences (repetitions) of a
given motif may suffer from deformations like amplitude scaling
or offset shift, which must be considered when comparing occur-
rences. Also, the length of occurrences may vary depending on
their time parametrization, and dealing with such time-warping
deformations is challenging. Moreover, a single time series may
contain several motifs of different lengths, stressing the need for
methods for discovering motifs at various time scales.

Over the past two decades, researchers have proposed various
definitions of Motif Discovery problems and derived several algo-
rithms to address these challenges to some extent [2, 10, 17, 18, 22,
35-37, 40, 64, 67, 69, 80, 84, 87, 88]. However, comparing algorithms
developed from different problem formulations is challenging, even
when they share a common objective. As a result, despite substan-
tial academic interest, there has been no systematic evaluation and
comparison of these diverse approaches. Consequently, selecting
the most suitable algorithm for a specific Motif Discovery task
remains an open question.

To tackle the limitation mentioned above, this paper first pro-
vides an exhaustive and comprehensive review of the literature
regarding the Motif Discovery problem’s definition, algorithms,
and data-related challenges. This study only focuses on methods
dealing with real-valued univariate time series, resulting in a pool of
55 methods classified into three different families. We also present
a comprehensive comparison and evaluation of a representative
set of 11 Motif Discovery algorithms. Algorithms’ performances, in
terms of flscore and time efficiency, are evaluated on 8 real-world
time series datasets and several synthetic datasets specifically de-
signed to measure algorithms’ robustness to challenges commonly
encountered with temporal data. Experimental results provide prac-
tical guidelines for selecting suitable Motif Discovery algorithms
for a given task and suggest directions for future works. Overall,
our contributions are as follows:

e We thoroughly present the literature on the time series Motif
Discovery problem by discussing its historical evolution and
trends (Section 2.1), enumerating several subproblem formula-
tions (Section 2.3) belonging to two generic problems.

e We propose a process-centric taxonomy in which the presented
Motif Discovery algorithms are grouped under three families.
We also provide additional characteristics for each method, such
as its preprocessing, the similarity measure used, and if it handles
motifs’ length variabilities (Section 2.4).

e We enumerate different challenges encountered in real-world
applications and derive six research questions relevant to the
Motif Discovery task raised by these challenges (Section 2.5).

e We introduce our experimental benchmark (Section 3), which
includes 11 Motif Discovery algorithms, 8 real-world labeled
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datasets (569 time series in total), a synthetic data generator, and
performance metrics.

e We present our experimental evaluation to address 6 research
questions motivated by data-related challenges (Section 4).
Specifically, we compared algorithms’ f1scores and execution
time on real-world datasets to evaluate performances on vari-
ous applications. The remaining questions address algorithms’
strengths and limitations on synthetic data generated from spe-
cific real-world inspired scenarios.

e We propose guidelines allowing users to choose which method
to use depending on the characteristics of the time series.

e We provide our material, including methods implementations,
datasets, and experiments, in an open-source repository !.

We conclude this paper with a discussion of the implications of
our work and future directions in Motif Discovery for time series.

2 TIME SERIES MOTIF DISCOVERY

This section first clarifies mathematical definitions and notations
related to time series Motif Discovery. It also provides a historical
review of research advances in this area. We then propose a novel
taxonomy for Motif Discovery algorithms, and we enumerate the
practical data-related challenges. These challenges raise research
questions presented and addressed in Section 4.

2.1 Motif Discovery: A brief History

Motif Discovery in real-valued time series implies identifying simi-
lar subsequences (representing a specific pattern or motif) within
the time series [39]. Before the formal introduction of Motif Discov-
ery [39, 55], most of the research studies focused on the problem
of identifying already known patterns (also referred to as query
by content) [1, 11, 20, 28-30, 71], or in identifying patterns (or
motifs) in discrete time series, in particular in computational bi-
ology [7, 15, 25, 60, 70], which had a strong influence in the early
real-valued time series Motif Discovery literature.

Indeed, inspired by the work in computational biology, Mo-
tif Discovery in real-valued time series has been first tackled by
proposing methods with a preprocessing step of discretizing time
series [12, 16, 39, 43, 44, 62, 73, 74, 82]. These methods directly
search for patterns in the discretized series, which reduces com-
putation times but only provides approximated solutions. Toward
exact results in a reasonable time, many papers have focused on the
simplified but well-posed problem named Best Motif Pair, which
consists of finding the subsequence pairs with minimum distances
under some non-overlapping conditions [2, 10, 18, 33, 34, 40, 45—
49, 53, 54, 77, 78, 82, 84, 87, 88].

Overall, in the two last decades, we observe several key mo-
ments in the resolution of the Motif Discovery problem: (i) The
introduction of the general problem in 2002 [39], (ii) the proposal of
the first algorithm to solve the Motif Pair problem exactly in 2009
[49], (iii) the use of grammar-based techniques on the discretized
time series in 2010 [17, 18, 35, 36, 69], and (iv) the introduction of
Matrix Profile in 2016 [84], which resulted in significantly reducing
execution time and on which many of the latest Motif Discovery
algorithms are based [2, 37, 40, 87, 88].

More recently, several Motif Discovery methods [22, 67, 80] were
introduced to solve the Motif Set problem. These methods aim to
maintain reasonable scalability without using a discretization step,
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Figure 1: Illustration of match, and overlapping subsequences

which is potentially difficult to calibrate. Finally, it is interesting to
note the recent emergence of auto-encoder methods for Motif Dis-
covery [5, 52, 63]. However, unlike all the other methods mentioned
above, a training phase is necessary, limiting their applications to
use cases with a large set of time series at our disposal.

2.2 Time Series and Motifs Notations

Although there exist methods to solve Motif Discovery on sym-
bolic [7, 72] or multivariate time series [42, 83], most of the methods
in the literature address univariate real-valued case, and in what
follows, we only discuss this case. We now introduce fundamental
definitions to assess the technical differences between the problem
formulations and the proposed algorithms.

DEFINITION 1 (UNIVARIATE REAL-VALUED TIME SERIES). An uni-
variate real-valued time series of length n is a time-ordered sequence
S =[s1,-..,sn] of n coefficients in R.

In the following, we refer to univariate real-valued time series
and time series without distinction. We first start by defining for-
mally the concept of subsequence:

DEFINITION 2 (SUBSEQUENCE). The subsequence of a time series
S € R" of length ¢ and starting at indexi € [1,...,n— ¢+ 1] is the
sequence Si¢ = [si, ..., Si+e—1].

For example, S;;, S;; and S ; illustrated in Figure 1 are subse-
quences of S. We now define the concept of matching subsequences:

DEFINITION 3 (MATCH). Given a threshold R > 0, the subse-
quences Si ¢ and Sj ¢ of a time series S € R™ are matching if and only
ifd(Si,g, Sj’[) < R.

For example, S;; and Sy in green in Figure 1 are matching. How-
ever, a difficulty encountered in the Motif Discovery task [31] is
the following: for almost every subsequence of a time series S, the
best match will be the subsequence just before or after the one con-
sidered. The notion of overlapping subsequences was introduced
to cope with this limitation, and formally defined as follows:

DEFINITION 4 (OVERLAPPING SUBSEQUENCES). Two subsequences
(Si,e, Sj,er) of a time series S € R™ withi < j overlap if j < i+1.

In Figure 1, 5;; and S;; (in green and orange) are overlapping
subsequences. Based on these definitions, we can now examine the
formal problems of Motif Discovery introduced in the literature.

2.3 Motif discovery: A multifaceted Problem

Attesting to the challenging nature of the problem, we observe
several definitions of the Motif Discovery task. Indeed, if we con-
sider the vague definition of motifs as a set of subsequences of a
time series fairly close to each other, the interpretation of fairly
close can lead to very different definitions of motifs. To assess the
variety of definitions and, therefore, the potential ambiguity of the
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Figure 2: Motif Discovery problems proposed in the literature inspired by [67]

problem, we provide below a historical, non-exhaustive list of the
main definitions in the literature.

e K-Motifs (2002) [39] (Figure 2(a)): Given a time series S, a sub-
sequence length ¢ and a range R, the most significant motif in S
(called 1-Motif) is the subsequence C; that has the highest count
of non-overlapping matches (ties are broken by choosing the
motif whose matches have the lower variance). The k" most
significant motifin T (called K-Motif) is the subsequence Cy. that
has the highest count of non-overlapping matches and satisfies
D(Ck,C;i) > 2R, forall 1 <i < K.

o k-th Motif Pair (2009) [49] (Figure 2(b)): The Best Pair Motif of
length ¢ of a time series S € R is the unordered pair of time series
subsequences S;;, S;; of S which is the most similar among all
possible non-overlapping pairs. The kth-Pair Motif of length ¢
of a time series S € R" is the k" most similar non-overlapping
pair of subsequences of S.

e Range Motif (2009) [49] (Figure 2(c)): The Range Motif with
range r is the maximal set of time series subsequences such that
the maximum distance between them is less than 2r.

e Variable Length Motif (2018) [37] (Figure 2(d)): Let {Sq,¢. Sg.¢}
be a Motif Pair of length ¢ of data series S € R” . The Motif Set
Mr,[ is: Mr’[ = {Si’[ | diSt(Si’[, Sa,l) <ror diSt(Si,l,Sﬁ’l) <r}

o Top-k Motiflet (2023) [67] (Figure 2(e)): Given a time series S,
cardinality k € N and length ¢, the top k-Motiflet of S is the set
M with | M| = k subsequences of S of length ¢ with minimal
extent. Where the extent of a set M is the maximal pairwise
distance between subsequences of M.

We could complete this list with many variants of the examples
above (K-Motif(n, R, d) [12], k-ball [38], Latent Motif [24], Uniform
Scaling Motif [82]). This vast list of problem definitions shows
the ambiguity of Motif Discovery and the difficulty of providing
a unique benchmark. However, we can distinguish between two
prominent families of problems, classified according to the nature
of the object returned by the methods. The first abstract problem
formulation is as follows:

PrROBLEM 1 (PAIR MOTIF DISCOVERY). Identifying the two most
similar non-overlapping subsequences in a time series.

Even though Problem 1 only encapsulate K-th Motif Pair prob-
lems, it concerns approximately more than 35% of the methods
proposed in the literature (c.f. Figure 2 and Figure 3). In addition,
Problem 1 is well-posed, and multiple exact and approximate meth-
ods with moderate complexity exist [48, 49, 84]. However, this
definition does not align with real-world applications where users
seek all occurrences of the desired patterns. For example, finding
only the most similar pair in electrical consumption time series is

insufficient for many applications, such as unsupervised appliance
detection for electrical consumption prediction [59]. In practice,
it can be valuable for practitioners to have methods that provide
a complete set of subsequences corresponding to a given motif.
Toward that direction, we can state the problem as follows:

PROBLEM 2 (MOTIF SET DISCOVERY). Identifying sets of subse-
quences that encompass every occurrence of distinct repeated patterns
in a time series.

While Problem 2 is deliberately more abstract than Problem 1,
encompassing multiple formal definitions, it is also more general
and better aligned with real-world applications of Motif Discovery.
Moreover, it is important to note that the Pair Motif Discovery
Problem can be seen as a sub-problem of the Motif Set Discovery
Problem. Once the motif pair has been found, a Motif Set can be built
around it. Several methods have been proposed in the literature to
post-process the output of Pair Motif methods to solve the Motif
Set problem [3, 50]. For example, VALMOD [37], which initially
solves the Pair Motif Discovery problem, can then build around
the identified motifs pair a set of motifs (i.e., solving the Motif Set
Discovery problem).

Therefore, we can evaluate and compare all the Motif Discovery
methods proposed in the literature, regardless of the problem they
initially solve, within the general problem of Motif Sets Discovery.

2.4 Process-centric Taxonomy

As mentioned above, Motif Discovery has attracted considerable
academic attention, and various methods have been proposed. How-
ever, as mentioned in Section 2.3, the methods proposed in the litera-
ture differ in terms of the definition of motif considered. In addition,
we also observe significant differences in terms of methodology
and challenges they attempt to address. Therefore, we propose
a process-centric taxonomy of Motif Discovery methods. Over-
all, we highlight three prominent families: (i) Frequency-based, (ii)
Similarity-based, and (iii) Encoding-based. We depict our taxonomy
in Figure 3 and detail each family below.

24.1 Frequency-based Methods. The frequency-based methods
aim at identifying sets of subsequences that represent the most fre-
quently repeated patterns. Many methods in this family take a radius
R as a parameter and try to find the set of non-overlapping subse-
quences of maximum cardinality that fit within a circle of radius
R [3, 12, 24, 38, 39, 44]. Some methods with a prior discretization
step make use of the fact that in a discretized time series, the ex-
act repetitions of an element can be counted to return the exactly
repeating elements with the highest cardinality (8, 85].
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2.4.2 Similarity-based Methods. The Similarity-based methods
aim at identifying a set of subsequences with minimum distance be-
tween occurrences independently of the number of occurrences in the
set. This is particularly true for all methods that rank the relevance
of a Motif based on the minimum pairwise distance between two
occurrences. Pair Motif is the extreme case where Motif Sets are
composed only of the two closer nonoverlapping subsequences.
Building on Pair Motifs algorithms, some Motif Set algorithms first
find Pair Motifs and construct the Motif Set around the Pair Mo-
tifs [3, 37]. Motifs can also be ranked based on other proximity
criteria, such as the maximum pairwise distance of a set of occur-
rences given a fixed number of occurrences [67].

2.4.3 Encoding-based Methods. The Encoding-based algorithms
aim at identifying a set of subsequences that represent the best way to
encode the time series according to different criteria. In the literature,

we find 3 main ways of encoding time series to find motifs: by using
information theory and the Minimum Description Length (MDL)
principle to rank the capacity of motifs to encode a time series
[73, 74, 81], by using Grammar Inference algorithms in which motifs
are seen as grammar rules and their occurrences as instances of the
rules [17, 18, 35, 36, 69], by training AutoEncoders to reconstruct
the time series with a minimum number of motifs.[5, 52, 63]

2.4.4 Discussion of the literature. Figure 3 highlights several
interesting findings. First, the most recently proposed methods be-
long to Similarity-based and Encoding-based families. Second, even
though the first methods proposed to solve the Motif Pair prob-
lem belongs to the Frequency-based family, most of the remaining
methods belong to the Similarity-based family (60% of the meth-
ods belonging to this family aims to solve the Motif Pair problem,
compared to only one for each of the two other families). Lastly, a
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large majority of the methods in the Encoding-based claim to de-
tect variable length motifs, either intra-motifs (i.e., variable length
occurrences of the same motifs) or inter-motif (i.e., different motifs
with different lengths). This can be explained by the fact that these
methods are not necessarily based on distance measurements that
impose rigid motif structures.

Based on this taxonomy, we select for our experimental evalu-
ation a subset of methods that cover most of the categories intro-
duced in the literature (highlighted in bold in Figure 3).

2.5 Motif Discovery in Practice

Beyond the different problem formulations and the different fami-
lies of methods, the literature is structured around several practical
challenges faced when applying methods to real-world data (Figure
4). In theory, the proposed methods have addressed these challenges
in different ways. However, there has never been a comprehensive
study comparing the methods in terms of their practical effective-
ness in addressing these challenges. Below, we list the most impor-
tant Motif Discovery challenges relevant to real-world applications
and some hints on how they have been dealt with in theory.

Challenge 1: Performances on real data. Practitionners gen-
erally want to find patterns representing interpretable temporal
events in real-life applications. The first challenge is, therefore, to
have a model that is generic enough to detect such temporal events,
which is characterized by good performance on expert-labeled data.
Challenge 2: Scalability for long time series. The Motif Discov-
ery task is computationally expensive. Indeed, the time complexities
of the methods are generally quadratic in the length of the time se-
ries. A significant challenge lies in the scalability of the algorithms.

This problem has been addressed in different ways, for example,
by solving computationally tenable subproblems such as the Pair
Motif Problem [48, 49, 84].

Challenge 3: Presence of several different motifs. Time series
can either contain one or several different motifs. The presence of
a large number of motifs is a major challenge, as the methods must
not only detect the occurrences, but also group them together. This
problem has been dealt with by searching for the K best motifs [3,
22,37, 61] and not only the best one. The number of motifs can be
a user given parameter [3, 37] or found by some heuristics [22, 61].
Challenge 4: Motifs cardinality. The cardinality of a motif refers
to its number of occurrences. Motifs can have variable cardinalities
and, therefore, be more or less rare. Moreover, there may also be im-
balances between the cardinalities of different patterns when there
are several motifs in the time series. The cardinality of patterns rep-
resents a real challenge since some approaches prioritize the most
frequent patterns [3, 24], while others prioritize patterns containing
the closest occurrences [37, 84], independently of cardinality.
Challenge 5: Variable length Variations in motif length pose a
significant challenge in time series analysis. These variations can
occur within the same motif due to deformations, expansions, or
contractions, a phenomenon known as time warping. This issue
is commonly addressed using elastic distance measures based on
Dynamic Time Warping (DTW) [2, 9, 14, 42, 73, 77, 79, 80]. Other
approaches allow motifs to have different lengths by merging over-
lapping occurrences [22, 26, 75] or by collapsing successive identical
symbols in discretized time series [35, 36, 69]. Length variations
can also result from the presence of multiple motifs with different
average lengths, known as inter-motif variability. For example, in
electrical consumption time series [59], motifs can appear on an
hourly or daily scale. This variability complicates the comparison of
motifs relevance when they have different average lengths. To ad-
dress this, several methods propose heuristics to determine optimal
motif lengths [43, 73, 74, 86], use grammar rules without predefined
lengths [17, 18, 35, 36, 69, 85], or enumerate motif occurrences over
a range of window lengths for comparison [37, 40, 45, 46, 53, 54].
Challenge 6: Spatial deformations. Occurrences of the same mo-
tif can be affected by deformations such as amplitude scaling, offset
shifts, linear trends, and noise. These variations pose a challenge,
as classical distances like Euclidean distance do not account for all
these factors. Z-normalized Euclidean distance was introduced to
handle amplitude variations and offset shifts by normalizing sub-
sequences’ standard deviations and means, effectively solving this
issue. However, linear trends have received little attention in the lit-
erature. A recent advancement, LT-normalized Euclidean distance
[21], extends Z-normalization to address this challenge. Noise is typ-
ically managed implicitly through distance and similarity measures
that allow some variability in the motifs sets.

The taxonomy presented in the previous section gives us an
overview of the methods families and indications of which chal-
lenges are theoretically addressed by which methods. However, to
our knowledge, no benchmark or extensive experimental evalua-
tion exists to compare the performances of the proposed methods.
In this paper, we propose to carry out this evaluation by looking at
the problem through the prism of the generic Motif Set Discovery
problem as defined in Problem 2, and relying on 6 research ques-
tions (noted RQ1 to RQ6 and addressed in Section 4) arising directly
from the challenges that practitioners may encounter.



Table 1: Our proposed collection of labeled time series. Ratio indi-
cates the time series percentage corresponding to a motif. i.M stands
for Intra-Motif (length), and I.M. stands for Inter-Motif (length).

# motifs avg. .
Dataset # TS ITS /#per TS motif M M.
en. . (std) (std)

/ratio len.

arm-CODA [13] 64 8,050 7/5/0.65 520 22 88
mitdb [23] 100 20,000 | 10/1.6/0.99 281 36 10
mitdb1 [23] 100 20,000 1/1/0.98 320 12 0
ptt-ppg [41] | 100 | 20,000 | 1/1/0.98 | 324 | 15 0
REFIT [51] 100 | 210,860 3/2.2/0.08 410 11 34
SIGN [27] 50 | 173,300 3/3/0.10 57 7 2
JIGSAWMaster [19] 23 10,300 8/3.8/0.66 156 38 66
JIGSAWSlave [19] 32 10,160 9/3.9/0.65 146 35 60

3 PROPOSED BENCHMARK

In order to address the research questions enumerated in the previ-
ous section, we have to carefully select algorithms from different
families to best represent the diversity of Motif Discovery tech-
niques. In addition, a broad range of domains and applications
should be represented in our labeled time series collection. In the
following section, we first describe in detail our proposed bench-
mark, composed of (i) 8 annotated time series datasets and (ii) 11
Motif Discovery algorithms. We summarize our benchmark in Ta-
ble 1 for the datasets and Table 2 for the methods. Finally, to ease
replication and re-usability, we provide an open-access (c.f. Artifact
Availability) to our datasets and methods implementations.

3.1 Real Time Series Collection

This section presents the different real datasets used to evaluate
Motif Discovery methods. Our selection criteria are the following:
(i) The datasets should cover alarge scope of time series type, and (ii)
the selected time series should highlight the enumerated challenges
in Section 2. Our selected datasets are the following:

arm-CODA [13]: is a dataset of 240 multivariate time series col-
lected using 34 Cartesian Optoelectronic Dynamic Anthropometers
(CODA) placed on the upper limbs of 16 healthy subjects, each of
whom performed 15 predefined movements. Each sensor records
its position in 3D space. To construct the dataset, we kept the left
forearm sensor of ID 29 and 5 of the predefined movements. The
occurrences of the five movements were randomly placed along the
time axis for each subject, sensor, and dimension. Gaussian noise
with a signal-to-noise ratio of 0.01 is added to all time series. This
resulted in a dataset of 64 univariate time series.

mitdb1 [23]: The MIT-BIH Arrhythmia Database contains 48 half-
hour recordings of two-channel ambulatory electrocardiograms
(ECGs) sampled at 360Hz. Cardiologists annotated the heartbeats
according to 19 categories. We divide all recordings into a time
series of 1 minute and keep only the first channel. We selected time
series of healthy subjects (according to [65]) that contains only
normal heartbeats and randomly selected 100 time series.

mitdb [23]: We randomly selected 100 one-minute time series from
the MIT-BIH dataset (healthy subjects or not). Each time series has
1 to 4 motifs (normal heartbeats and different types of arrhythmia),
each with several occurrences.

ptt-ppg [41]: Pule-Transit-Time photoplethysmogram (PPG) con-
sists of time series recorded with sensors (sampled at 500Hz) from
healthy subjects performing physical activities. The annotated mo-
tifs are heartbeats. We randomly select 100 40-second-long signals
from the first channel of the PPG during the “run” activity.

REFIT [51]: This dataset provides aggregate and individual appli-
ance load curves at 8-second sampling intervals from 20 houses.
We selected 10 houses and aggregated recordings of the appliances:
dishwasher, washing machine, and tumble dryer. The recordings
were down-sampled to 32-second intervals and divided into time
series of one week. We kept 10 time series for each house in which
the appliances were not used simultaneously. It resulted in a 100
univariate time series dataset with a maximum of 3 different motifs.
SIGN [27]: This dataset is built from samples of Australian sign lan-
guage. 95 signs were collected from five signers, totaling 6650 sign
samples. Based on this, we generate a long time series by injecting
several words (concatenation of signs). The different injected signs
are the motifs. Every word is separated with flat sequences (i.e.,
without any motifs). In total, we generate 50 different time series.
JIGSAW [19]: This dataset contains time series recorded from the
DaVinci Surgical System. Each time series contains 76 dimensions
(i.e., sensors) with an acquisition rate of 30 Hz. The sensors are
divided into two groups: patient-side manipulators JIGSAWSlave),
and master tool manipulators JIGSAWMaster). The recorded time
series corresponds to surgeons performing a suture that can be
decomposed into 11 gestures. Each gesture corresponds to a motif
that can be repeated multiple times within the same time series.
Overall, we selected 23 time series (from different sensors) for
JIGSAWMaster and 32 time series for JIGSAWSlave.

3.2 Synthetic generator

This section presents the synthetic time series generator used to
perform the experiments corresponding to RQ 2 to 6.

For a given number of motifs K, the generator constructs one repre-
sentative per motif. Given an average length /;, and a fundamental
frequency (set to 4Hz in our case), a motif representative is gen-
erated as the sum of the sine function of the I; first harmonics,
with the phases and the amplitudes uniformly sampled over [, ]
and [1,1]. The k; occurrences of motif i are then constructed by
temporally distorting the initial representative. In practice, we use
a parameter called length fluctuation defined as the maximum vari-
ability of the occurrence’s length to the average length. For example,
a ratio of 0.1 means that we resample the occurrences of the motif
so they have lengths varying up to +£10% from the average length.
The occurrences of all motifs are then randomly concatenated and
spaced according to sparsity parameters. Finally, white Gaussian
noise of standard deviation o, and a random walk (to model local
linear trends) are added to the signal.

We use baseline settings for all synthetic experiments, which can
be found on GitHub. For each experiment, we vary one or more
of these parameters according to the question we wish to answer
(this setting is different for RQ2 since we vary the exact length of
the time series, which is constant in other RQs).

3.3 Representative Motif Discovery Methods

The following motivations drive our selection of Motif Discovery
methods: (i) Our collection of methods should have at least one rep-
resentative from each of the main families of methods we presented
earlier. (ii) Priority is given to methods that have represented a great
advancement in the field [3, 88]. (iii) Our collection should contain
recent approaches tackling a large panel of challenges enumerated
in Section 2 [22, 69, 80]. (iv) We finally favor algorithms with avail-
able implementations or detailed code descriptions. These criteria
led us to choose the following methods (summarized in Table 2):



Table 2: Our proposed collection of methods. K represents the num-
ber of motifs, w the window (or subsequence) length, R the range, r
the range ratio, and n the length of the time series. “These methods
use pruning strategies that reduce calculation time in most cases.

Methods Parameters Complexity (Worst Case)
SetFinder [3] K, w,R o(n’)
LatentMotif [24] K,w,R O(wn)
STOMP [84] K,w,r 0(n%)
VALMOD ([37] K, Wmin, Wmax. O((Wmax — Wmin)"z)*
PanMP [40] K, Wmin, Wmax, O((Wmax — Wmin)nz)
k-Motiflets [67] | kmax: Wmin> Wmax O (kmaxn® + nkZ,5)
PEPA [22] Winin, K O(Kn?)
A-PEPA [22] Winin O(Kn?)
GrammarViz [69] K,w O(wn?)
MDL-Clust [61] Wmin, Wmax O(ns/Wmin + (Wmax — Wmin)nz)*
LoCoMotif [80] K, Wimin, Wmax O(n? Hon—Viuin y

SetFinder [3] finds the K-motif sets (c.f., Section 2) directly, based
on a counting and separating principle. In practice, each sub-
sequence is compared to every other, and the non-overlapping
matches are counted. Then, each subsequence with a non-zero
count is checked to ensure that its distance to another subsequence
with a larger number of matches is greater than a given threshold.
LatentMotif [24] addresses a variant of the K-Motifs problem as
a constrained optimization task, where the center of the motif is
learned (the center does not need to be a subsequence of S but
can belong to any element in R"). The objective and constraint
functions are regularized to enable gradient ascent. The learned
subsequences are then returned as the centers of the motif sets. A
scan of the time series is conducted to identify all occurrences of
each motif set. Non-overlapping subsequences within a distance R
of the learned center are considered occurrences of the motif set.
STOMP [84] is a similarity-based method and proposes a fast
computation of the Matrix Profile by efficiently leveraging the
Fast Fourier Transform (FFT). Once the Matrix Profile is computed,
the center of the Motif Set is defined as the subsequence with the
minimum distance to another non-overlapping subsequence. A scan
of the time-series subsequences is performed, and non-overlapping
subsequences that are at a distance of less than R from the center
are identified as occurrences of the corresponding Motif set [50].
PanMP [40] aims to generalize the Matrix Profile approach to de-
tect patterns at varying time scales without requiring prior knowl-
edge of the Motif size. To achieve this, the PanMatrixProfile—a ma-
trix that contains Matrix Profiles for a range of window lengths—is
computed. Based on distance and regardless of window size, the
best non-overlapping Motif Pairs are then iteratively selected. The
Motif sets are constructed from these selected Motif Pairs in the
same way as in STOMP. Note that if the range of window sizes is
restricted to a single value, PanMP is identical to STOMP.
VALMOD [37] has a similar goal to PanMP but employs a slightly
different approach. It leverages pruning techniques to compute the
Matrix Profile over a range of window lengths, £. Motif Pairs are
iteratively selected based on distance normalized by the square
root of the window length. Motif sets are then built from these top
Motif Pairs by identifying non-overlapping subsequences within a
distance < R from one of the two centers (see Section 2.3).
k-Motiflets [67] aims to discover motifs without needing to set a
radius parameter R, unlike most other algorithms in our benchmark.
Instead, the user specifies the desired number of occurrences k for
the target motif. The method identifies the set of k non-overlapping

subsequences with minimal extent, where extent is the maximum
pairwise distance among elements in the set (see Section 2.3).
PEPA [22] extracts the motifs through three computational steps:
(i) the time series is transformed into a graph with nodes repre-
senting subsequences and edges weighted by the distance between
subsequences; (ii) persistent homology is applied to detect signifi-
cant clusters of nodes, isolating them from nodes that correspond
to irrelevant parts of the time series; and (iii) a post-processing step
merges temporally adjacent subsequences within each cluster to
form variable length motif sets. PEPA utilizes the LT-Normalized
Euclidean distance [21], a distance invariant to linear trends.
A-PEPA [22] is variant of PEPA that does not require the user to
define the exact number of motif sets and estimates it automatically.
Grammarviz [69] uses grammar induction methods for motif
detection. In practice, the time series is discretized using SAX, and
grammar induction techniques, such as Sequitur or RE-PAIR, are
applied to the discretized series to identify grammar rules. The
most frequent and representative grammar rules are selected, and
occurrences of the various motifs are then extracted.

MDL-Clust [61] claims to perform clustering of subsequences.
However, since clustering time series subsequences is generally
ineffective [31], the authors propose disregarding data that does
not fit into any cluster and avoiding overlapping subsequences.
Thus, the output of MDL-CLust can be fully interpreted as motif
sets. The method utilizes the MDL principle to form clusters. In
each iteration, we can either create a new cluster (by selecting
the first two members using a classic PairMotif algorithm), add a
subsequence to an existing cluster, or merge two clusters. We select
the operation that most effectively reduces the description length.
The algorithm terminates when no usable data remains or further
reduction in the time series description length is no longer possible.
LoCoMotif [80] addresses the challenge of variable length by
searching for time-warped motifs at different time scales in the time
series. In the first step, the Self-Similarity Matrix of the time series is
utilized to construct paths based on a principle similar to Dynamic
Time Warping (DTW). The paths with the highest accumulated
similarity in this matrix are identified. In the second step, these
subpaths are grouped to create candidate Motifs. The method then
assesses the encoding capacity of these candidates using a quality
score that combines the similarity between occurrences with the
overall coverage of the Motif set.

3.4 Parameters Settings

All these methods share several common parameters (detailed in
Table 2). These parameters are complex to set in practice and can
strongly impact performances. In order to perform a fair compar-
ison between all methods in our benchmarks, we set the values
of these parameters to their optimal values (based on the exact
characteristics of the time series in our benchmark). Overall, the
parameters are the following:

The first is the number of patterns K to retrieve (SetFinder,
Grammarviz, LatentMotifs, LoCoMotif, STOMP, VALMOD). In our
experimental evaluation, we set this parameter to the exact number
of patterns in the time series. One method in our benchmark only
requires the maximum number of occurrences (kmax) (Moti-
flets). In practice, we set this parameter to the maximum number
of occurrences of all Motifs.

The second is the radius R (SetFinder, LatentMotifs). We can
set this parameter for synthetic data, on which we can control the



radius. However, this parameter has to be estimated for real time
series. In practice, for all the occurrences of a motif (the set of oc-
currences is noted M), we compute Ry = maxs; s;em dist(S;, Sj)/2.
The latter is the minimum radius for capturing all occurrences of
M. We then compute the average radius for all motifs as follows:
R= % Zgi 1 Ri.. We finally use R as the radius parameter.

The third parameter is the radius ratio r (STOMP, VALMOD,
PanMP). This parameter is required for methods based on the best
Motifs Pair to build the Motif Set. These methods propose a heuristic
for the radius R, which is a ratio of the distance D between the
two occurrences of the Motif Pair. The heuristic is the following:
R =r X D. In our benchmark, We take r = 3 as the default value.

The last parameter is the window length (w) (SetFinder, Gram-
marviz, LatentMotifs, MatrixProfile). In our benchmark, we set w
as the average length of occurrences of all motifs. Some methods
in our benchmark require a range between a minimum length
(Wmax) and maximum length (wpax) (VALMOD, LoCoMotifs,
MDL, PEPA, Motiflets). In our experiments, we set these parameters
to the minimum and maximum length of occurrences of all motifs.

3.5 Evaluation Measures

It is important to note that there is no consensus on how to em-
pirically evaluate Motif Discovery in time series. As scalability is
one of the most significant aspects of Motif Discovery, many re-
search studies evaluated methods on the computation efficiency
[12, 16, 34, 39, 49, 77, 82]. In terms of accuracy, the evaluation per-
formed in the literature is mainly qualitative and the ability of algo-
rithms to detect relevant patterns is visually assessed [12, 49, 77, 82].
Quantitatively, the accuracy is either assessed using the average
distance between occurrences of a detected pattern [38, 62] or on
the cardinality of the Motifs Sets [24, 67].

In this paper, we propose to use the metrics based on classic met-
rics for event detection tasks in time series [22, 76]. More precisely,
we evaluate performance with range based-precision, recall, and f1-
score metrics [76]. Nevertheless, the computation of these metrics
requires pairing real and predicted motif sets. The optimal pairings
maximize the total overlapping between real and predicted motif
sets. The latter can be computed with the Hungarian matching
algorithm [32, 66]. Then, the precision, recall, and f1-score compu-
tation rely on the optimal pairings and a threshold 7 € [0, 1] that
controls the overlapping ratio. Any metric’s score is the average of
the individual metric score between paired motif sets; the averag-
ing can be macro or weighted. For precision (resp. recall), a motif
occurrence is counted as a true positive if the ratio between the
overlap length and the predicted (resp. real) occurrence length is
greater than the threshold 7. As in [22], this threshold is set to 50%
for all experiments. Results for all threshold percentages, including
plots for 25% and 75%, are however available on our repository. For
clarity, we use the fl1-score for comparisons throughout the paper,
as it accounts for both precision and recall.

4 EXPERIMENTAL EVALUATION

We now describe our experimental analysis in detail. We use the
benchmark described in Section 3 to answer 6 research questions
arising directly from the challenges in Section 2.5. Our material is
publicly available online (c.f. Artifact Availability).

The evaluation was performed on a server with Intel(R) Xeon(R)
Gold 5220R CPU @ 2.20GHz, and 250 GB of RAM. When available,
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Figure 5: Critical difference diagrams

we have used the original implementations of the algorithms, as
is the case for LoCoMotif, Motiflets PEPA, A-PEPA, and Grammar-
viz. Otherwise, we have reimplemented the corresponding meth-
ods (STOMP, PANMP, VALMOD, MDL, LatentMotifs, SetFinder) in
Python. All the methods are implemented in Python except Gram-
marviz, for which the authors’ proposal was in JAVA. For the rest
of this paper, we set a time-out threshold to 20 000 seconds. The
performances of each method are averaged on the whole dataset for
real data (RQ1), over 5 runs (i.e. 5 different generated time series)
for execution time estimates (RQ2), for which we mainly want to
have an order of magnitude, and on 100 runs for fscores estimates
(RQ3 to RQ6), for which we want more precision.

Note: In the absence of length variation (as in RQ2 to 4, and
6), STOMP and PANMP produce identical and are labeled as
STOMP/PANMP.

RQ1: Performances on real data

Are there any methods that stand out from the rest in terms of perfor-
mance on real data datasets?

We start our experimental evaluation by measuring the per-
formances (both in terms of f1-score and execution time) of the
selected Motif Discovery methods on our collection of real labeled
time series. All these time series contain motifs corresponding to
actual temporal events and are relevant to the practical challenges
enumerated in Section 2. Our evaluation is summarized in Table 3
(the empty cells correspond to methods that crashed or reached our
time-out defined in the previous section ). We also present critical
difference diagrams, with (Figure 5(a)) and without (Figure 5(b))
REFIT and SIGN, showing the average rank of each method over
the entire dataset. The dark lines represent cliques of methods with
broadly similar performance, found using pairwise Wilcoxon tests.

Methods results vary greatly from one dataset to another. Except
for Grammarviz, all methods perform well on at least one dataset,
while Grammarviz stands out with significantly lower execution
times. More precisely, we observe that the performances of all
methods are low for REFIT and SIGN, which could be explained
by a very low ratio of motifs per time series compared to other
datasets (c.f. Table 1). The difficulties encountered by methods on
these datasets opens an interesting research direction. On the other
hand, the critical difference diagrams show that isolating a single
best method is difficult. However, PEPA, A-PEPA, SetFinder and
STOMP seem to stand out from the crowd on both diagrams. Finally,
since the time series used in the experiments have very different
characteristics, it remains challenging to determine which specific
one has the most significant impact on each method’s performance.

RQ1 Conclusion: PEPA, A-PEPA, STOMP and SetFinder seem to
have slightly better results on real data, according to critical diference
diagrams. However, the variations in methods performances between
the dataset show the importance of asking precise questions about



Table 3: Fscore, and execution time in seconds of the methods on the real datasets. Standard deviations between parantheses. Empty cells
corresponds to time-out. A version of the table with precision and recall is available on our repository.

dataset ‘ metric ‘ STOMP PanMP  LoCoMotif LatentMotif MDL-Clust k-Motiflets PEPA VALMOD  SetFinder A-PEPA  GrammarViz
fscore | 0.25(0.15) 0.22(0.10) 0.17(0.17) 027 (0.14)  0.66(0.25  0.03(0.07)  0.29(0.14) 0.29(0.15) 0.20 (0.05) 0.29(0.17)  0.01(0.02)
arm-coda Exec. time | 0.5(0.06) 170 (63) 18 (8) 30 (9) 555 (159) 154 (42) 2(03) 303 (80) 1.5(0.5) 2(03) 0.3 (0.00)
fscore | 0.50 (0.20) 0.14(0.22) 0.12(0.18)  0.29(0.24)  033(0.15)  0.40(0.37)  0.41(0.30) 0.17(0.23) 0.55(0.17) 051(0.19)  0.00 (0.00)
mitdb Exec. time | 2.9(0.01) 934 (600) 1252 (3837) 14 (8) 4178 (1483) 16396 (10413)  11(0.4) 1762 (1273)  14(2.3) 11 (0.4) 0.41 (0.02)
fscore | 0.63(0.19) 0.69(0.26) 0.29(0.14)  0.14(0.14)  0.18(0.07)  0.44(0.37)  0.46(0.34) 0.66(0.25) 0.77 (0.10) 0.36 (0.20) 0.0 (0.00)
mitdb1 Exec.time | 3(0.05) 187 (105) 76 (8) 7(15) 1133 (254) 3157 (1918) 11(0.5) 156(48) 12 (1.2) 10 (0.5) 0.42 (0.02)
fscore | 0.49(0.18) 0.53(0.23)  0.38 (0.16) 0.27 (0.17) 0.18 (0.07) 0.61(0.26)  0.68(0.12) 0.54(0.23) 0.69 (0.05) 0.43(0.16)  0.00 (0.01)
ptt-ppg Exec.time | 3(0.6) 270 (200) 102 (17) 8 (2.8) 1261(279) 4598 (2630) 11 (0.2) 204 (86) 23 (3) 12 (1.4) 0.4 (0.02)
fscore | 0.26(0.10) 0.10(0.12) 0.33(0.10)  0.26(0.12)  0.23(0.08)  0.13(0.08)  0.18(0.09) 0.17(0.09) 0.23(0.04) 0.20(0.09)  0.10 (0.05)
JIGSAWMaster | Exec. time | 0.9(0.8) 420 (520) 318 (665) 7(6) 2214 (2147) 660 (669) 4(3) 1208 (1038) 5(5) 4(3) 0.31(0.04)
fscore | 0.25(0.12) 0.05(0.07) 0.33(0.12)  024(0.10)  0.23(0.06)  0.15(0.10)  0.17(0.08) 0.20(0.10) 0.22(0.05) 0.18(0.08)  0.10 (0.06)
JIGSAWSlave | Exec. time | 0.87 (0.68) 343 (300) 189 (267) 6 (4) 2005 (1812) 590 (512) 4(3) 1453 (1459) 4.7 (4) 4(2) 0.31(0.03)
fscore 00 (0.03) - 0.03 (0.08) - 0.14 (0.12) - - 0.16 (0.15)  0.00 (0.00)
REFIT Exec. time 500 (96) - 230 (122) - 1280(100) - - 1310 (120) 63(12)
fscore | 0.06 (0.04) - 0.14 (0.09) - 0.17 (0.03) - - 0.20(0.06)  0.10(0.07)
SIGN Exec. time | 300 (25) - 50(10) - 900 (85) - - 900 (38) 5 (18)
Frequency Similarity Encoding acceptable execution times up to 500,000 samples, while the other
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Figure 6: Execution time versus the time series length

which time series characteristics influence the performance of the algo-
rithms. Thus, in the following sections, we benefit from our synthetic
generator in identifying specific challenges. In practice, we generate
time series with the default parameters detailed in Section 3, and we
vary only the parameter of interest for a corresponding challenge,
such as the number of different motifs or the noise amplitude.

RQ2: Scalability for long time-series

Are the methods capable of solving the problem in a reasonable amount
of time for a relatively long time series ?

In this section, we measure the influence of the length of the time
series on the execution time of the methods. In practice, we generate
time series containing 5 occurrences of a single motif of length 100
and we vary the total length of the time series from 600 to 1 000
000 samples. Firstly, the execution times obtained are consistent
with the theoretical complexities of the algorithms in Table 2. We
see a quadratic growth for all methods except SetFinder (cubic
growth) and LatentMotif (linear growth). Moreover, some methods
scale much better than others. LoCoMotif crash for 150,000 samples
and Valmod for 200,000. On the other hand, SetFinder reaches our
time-out threshold of 200,000 samples, while all the other methods
except LatentMotif and Grammarviz reach 1,000,000 samples.
RQ2 Conclusion: Grammarviz and LatentMotif are the most scal-
able methods in terms of computational efficiency for handling long
time series. STOMP, PanMP, MDL-Clust, PEPA, and A-PEPA have

methods crash or exceed the timeout before that.

RQ3: Presence of several different motifs

Are the methods robust to a high number of different motifs?

In this section, we evaluate the robustness of methods to a vari-
ation of the number of different motifs. In practice, we generate
time series with the basic setting mentioned in Section 3.2, except
for the number of different motifs, which varies from 1 to 50. Fig-
ure 7(a) depicts the average f1score on 100 runs for each method.
For example, we show the synthetic time series generated for 1
motif (top-left), 5 motifs (top-middle), and 10 motifs (top-right).

Methods using a fixed radius (SetFinder, LatentMotif) see a

performance drop as the number of motifs increases. In contrast,
STOMP, PANMP, and VALMOD, which adjust the radius based on
PairMotifs’ distances, are less affected—VALMOD even remains sta-
ble due to its different motif definition, making it more suitable in
the presence of many motifs. MDL-Clust and A-PEPA also decline
in performance, because they estimate the number of motifs, and
the more motifs there are, the more complicated this estimation
becomes. Surprisingly, LoCoMotif performs poorly with few motifs
but improves significantly as more motifs are added. This is due
to its lack of subsequence normalization, initially misidentifying
flat areas as motifs. As the number of motifs increases, true motifs
are detected alongside flat areas, but the latter have a much smaller
impact on the final score.
ROQ3 conclusion: VALMOD, PEPA, and Grammarviz are particu-
larly robust to the number of motifs. In addition, Locomotif has
good performances for a large number of motifs. However, all of
these algorithms require the number of motifs K as input.

RQ4: Motifs cardinality

Are the methods capable of finding all occurrences of the most relevant
motifs independently of their cardinality? (RQ4.1)

Are the methods capable of detecting several motifs when there is a
cardinality unbalance? (RQ4.2)

In this section, we first evaluate the ability of methods to detect
the occurrence of motifs with different cardinalities (RQ4.1). In
practice, we generate time series with the setting mentioned in
Section 3.2, except for the number of motif occurrences, which
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Figure 7: Influence of the number of motifs (top-left); the number of occurrences (bottom-left); the cardinality unbalance (right).

varies from 2 to 100. Figure 7(b) depicts the average f1score on 100
runs for each method. We show synthetic time series generated for
3 (top-left), 30 (top-middle), and 80 occurrences (top-right).

Most methods (STOMP, Valmod, SetFinder, LatentMotif, Gram-

marviz and LoCoMotif) show stable performance regardless of the
number of occurrences. PEPA and A-PEPA perform best around
10 occurrences. These methods tend to overestimate motif lengths,
but the impact on the score diminishes with more occurrences.
However, as the number of occurrences increases, they are more
likely to merge distinct, closely spaced occurrences, which lowers
the score. MDL-Clust performs best around 50 occurrences, as its
encoding-based approach benefits from more occurrences, making
motifs more significant and easier to detect. However, with too
many occurrences, the algorithm tends to create subclusters for the
same motif, reducing performance. Motiflets performs well with
both few and many occurrences, though it shows a slight dip in
accuracy around 5 occurrences. This is because it uses an elbow
technique to estimate the number of occurrences, which has dif-
ficulty in accurately estimating the exact number of occurrences.
However, as the number of occurrences increases, missing a few
has less impact on overall performance.
RQ4.1 conclusion: VALMOD, PanMP, STOMP, Grammarviz, La-
tentMotif and SetFinder are particularly robust to the number of
occurrences. Motiflets has good performances when motifs sets have
many occurences.

We now evaluate the impact of an unbalanced cardinality be-
tween different motifs, i.e., a difference in the number of occurrences
between two different motifs (RQ4.2). In practice, we generate time
series with the baseline settings, except that there are 2 motifs and

that the respective number of occurrences of these 2 motifs varies
between 3 and 100 to obtain all possible combinations. Figure 7(c)
depicts the average flscore on 100 runs for several methods (the
missing methods are provided in our repository). The diagonal cor-
responds to cases where the two motifs have the same number of
occurrences. For example, we show synthetic time series generated
with 3 and 3 (top left), 3 and 20 (top middle), and 3 and 100 (top
right) occurrences of motif 1 and motif 2.

Figure 7(c) highlights four behaviors: (i) methods for which the
variation in the occurrences of the two motifs has almost no im-
pact (VALMOD, STOMP, and SetFinder) (ii) methods for which the
impact is not related to the difference in occurrences between the
two motifs but rather to the number of occurrences itself (PEPA,
MDL-Clust, and A-PEPA). (iii) methods for which performance
decreases when we move away from the diagonal -i.e. perfectly
balanced cardinalities- (LoCoMotif and Grammarviz). (iv) Motiflets
(Figure 7(c.6)) for which performances increase when we move
away from the diagonal -i.e. unbalanced cardinalities. This last be-
havior stems from Motiflets’ design, which aims to find the top 1
motif for a fixed number of occurrences. We remind that the exact
number of occurences is determined by an heuristic. When multiple
motifs with different occurrence counts are present, the heuristics
may identify multiple optimal values, allowing the detection of each
motif sets. This explains why Motiflets performs better outside the
diagonal (i.e. with unbalanced cardinalities).

RQ4.2 conclusion: VALMOD, STOMP, and PanMP are particularly
robust to unbalanced cardinality of motif sets.
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RQ5: Variable length

Are the methods robust to the presence of an Intra-Motif variable
length due to temporal deformations of the initial motif ? (RQ5.1)
Are the methods able to detect motifs of different timescales? (RQ5.2)
In this section, we first evaluate the robustness of methods to the
presence of an Intra-Motif variable length due to temporal deforma-
tions of the initial motif (RQ5.1). In practice, we generate time series
with the baseline settings except for the length fluctuation parame-
ter described in Section 3.2, which varies from 0 to 0.9. Figure 7(b)
depicts each method’s average flscore on 100 runs. As examples,
we show synthetic time series generated for a length fluctuation
ratio of 0.0 (top-left), 0.5 (top-middle), and 0.9 (top-right).

As expected, STOMP, PANMP, LatentMotif, and Motiflets ex-
perience a performance drop even with slight length variations,
as they rely on rigid distances and enforce uniform occurrence
lengths within the same motif set. Surprisingly, SetFinder, despite
having the same constraint, maintains relatively stable performance.
Among methods designed to handle intra-motif length variation,
only PEPA and A-PEPA maintain good performance even with sig-
nificant fluctuations, while Grammarviz and LoCoMotif experience
a drop even with slight variations. PEPA and A-PEPA address this is-
sue by merging overlapping subsequences into a single occurrence,
which appears to be the most effective approach.

RQ5.1 conclusion: PEPA is the most robust method to length vari-
ation, followed by A-PEPA and SetFinder. The latter maintains a
constant performance, although not as high as the two others.

We now evaluate the methods’ ability to detect motifs present
at different time scales, meaning that motifs with different aver-
age lengths represent different time scales (e.g. one second or one
minute) (RQ5.2). In practice, we generate time series according to
the baseline settings, except that there are 2 motifs and the average
lengths of motif occurrences vary. We fix the average length of the
first motif between the following values: 40,50,100,150,250,500. The
average length of the second motif varies within the same range of
values to obtain all possible combinations. Figure 8(b) depicts the
average f1score on 100 runs for each method and a combination of
average lengths. The diagonal corresponds to cases in which the

two motifs have the same length. As examples, we show synthetic
time series generated with motif 1 and motif 2 of length 40 (top-left),
motif 1 of length 40 and motif 2 of length 150 (top-middle), motif 1
of length 40, and motif 2 of length 500 (top-right). We only show
the results for 5 methods (the results of the remaining methods can
be found in our repository).

Figure 8(b) highlights three behaviors: (i) methods allowing some
flexibility in occurrence lengths across motif sets, which maintain
good performance outside the diagonal (i.e. with Inter-Motifs length
variation) but may drop at the extremes (VALMOD in Fig 8(b.2), A-
PEPA in Fig 8(b.1)); (ii) methods without this flexibility, performing
well on the diagonal (i.e. without Inter-Motifs length variation) but
experiencing a sharp drop elsewhere (STOMP in Fig 8(b.4)); and (iii)
methods with consistently low performance and no clear perfor-
mance pattern (LoCoMotif in Fig 8(b.3), Grammarviz in Fig 8(b.5)).
RQ5.2 conclusion: MDL-Clust, STOMP and Motiflets are the most
suitable methods for small timescale variations between motifs. Only
PEPA, A-PEPA and VALMOD maintain relatively good performance as
soon as the scale variation increase. Overall, only VALMOD maintains
good performance for extreme cases.

RQ6: Spatial deformations

Are the methods robust to linear trends in the time series ? (RQ6.1)
Are the methods robust to noise in the time series ? (RQ6.2)

In this section, we first evaluate the robustness of methods to
the presence of linear trends of different amplitudes (RQ6.1). In
practice, we generate time series with the baseline settings and
add a linear trend modeled by a background random walk. This
random walk is generated as the cumulative sum of a Gaussian
noise of standard deviation varying from 0 to 50. Figure 9(b) depicts
each method’s average flscore on 100 runs. For example, we show
synthetic time series generated for a walk amplitude level of 0
(top-left), 5 (top-middle), and 50 (top-right).

STOMP, PANMP, VALMOD, and LatentMotif experience a per-
formance decline, varying in speed, when walk amplitude is in-
troduced—an expected outcome given their reliance on distance
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measures highly sensitive to linear trends. MDL-Clust and Gram-
marviz show a predictable drop due to their use of discretization,
which quickly degrades. Grammarviz suffers a sharp decline, while
MDL-Clust’s drop is more gradual, likely due to differences in their
discretization methods. In contrast, Motiflets and LoCoMotif see
a performance increase with small random walk before declining.
This occurs because mild random walk helps distinguish motif-free
zones, correcting previous misinterpretations. However, for high
random walk amplitude, motifs are harder to recognize, leading to
a performance drop. PEPA follows a similar pattern, with an initial
improvement lasting longer than for other algorithms. This is due
to its use of the LT-Normalized Euclidean distance, which provides
some invariance to local linear trends, allowing it to correctly detect
motifs even at higher walk amplitudes.

RQ6.1 conclusion: SetFinder shows consistent performances in the
presence of random walk. Motiflets, PEPA, and LoCoMotif maintain
correct performance even for high random walk amplitudes.

We now evaluate the robustness of methods to noise. For that
purpose, we generate time series according to the baseline settings
except for the noise amplitude. A Gaussian noise of standard devia-
tion varying from 0.01 to 50 is added to the time series. This range
corresponds to signal-to-noise ratio (SNR) varying from 75 to 1,5.

SetFinder maintains stable performance across all noise levels,
while LatentMotif, despite an initial drop, remains fairly stable and
even improves as noise increases. In contrast, Grammarviz and
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Figure 10: Overall guidelines inferred from our evaluation

MDL-Clust both experience performance drops due to the sensi-
tivity of discretizations to noise; however, Grammarviz declines
sharply, whereas MDL-Clust shows a more gradual decrease. Sim-
ilarly, STOMP and VALMOD also see performance declines, but
STOMP’s stricter occurence selection criteria enable it to perform
better than VALMOD. On the other hand, LoCoMotif and Moti-
flets benefit from higher noise levels, as the noise helps distinguish
non-motif zones, thereby preventing misclassification. Notably, Mo-
tiflets show significant improvement in these conditions. Finally,
PEPA and A-PEPA initially improve with slight noise but then de-
cline, with A-PEPA dropping more quickly due to its tendency to
overestimate the number of motifs sets as noise increases.

RQ6.2 conclusion: STOMP, PANMP, and Motiflets are the most
suitable for very noisy time series. If the noise is non-zero without
being excessively high, one can also consider using VALMOD or PEPA.

5 CONCLUSIONS

Motif Discovery is a challenging task with significant applications
across various fields. Given the numerous methods available in
the literature, proper evaluation is crucial. In this paper, we con-
ducted a literature review and a comprehensive evaluation under
challenging scenarios. While some methods (e.g., PEPA, A-PEPA,
STOMP, SETFINDER) show better overall performance on real data,
no single method can address all challenges effectively. Performance
largely depends on the specific characteristics of the time series.
To move beyond this broad conclusion, we designed experiments
to isolate and measure the impact of individual time series char-
acteristics. Our findings address six key research questions and
provide guidelines to help users select the most suitable method for
their needs (summarized in Figure 10). However, our experiments
focused on simple scenarios to deliver clear insights. We considered
time series with complex combinations of non-trivial characteristics
in the context of RQ1 on real-world data. In this specific case, we
cannot isolate the influence of individual characteristics. Further
research could investigate scenarios combining multiple challenges,
opening avenues for future studies. We believe that Motif Discovery
remains an open problem, as no single method is uniformly better.
Even on some of our arguably simple datasets, there is still room
for progress. We hope this work can provide valuable insights and
contribute to ongoing efforts to improve Motif Discovery.



REFERENCES

(1]

[10]

(11

[12]

[13]

[14

[15]

[16]

[17]

[18]

[19

[20]

[21

[22]

[23]

Rakesh Agrawal, Christos Faloutsos, and Arun Swami. 1993. Efficient similarity
search in sequence databases. In Foundations of Data Organization and Algorithms:
4th International Conference, FODO’93 Chicago, Illinois, USA, October 13-15, 1993
Proceedings 4. Springer, 69-84.

Sara Alaee, Kaveh Kamgar, and Eamonn Keogh. 2020. Matrix profile XXII: exact
discovery of time series motifs under DTW. In 2020 IEEE international conference
on data mining (ICDM). IEEE, 900-905.

Anthony Bagnall, Jon Hills, and Jason Lines. 2014. Finding motif sets in time
series. arXiv preprint arXiv:1407.3685 (2014).

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.
2017. The great time series classification bake off: a review and experimental
evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 31, 3 (May
2017), 606-660. https://doi.org/10.1007/s10618-016-0483-9

Kevin Bascol, Rémi Emonet, Elisa Fromont, and Jean-Marc Odobez. 2016. Un-
supervised interpretable pattern discovery in time series using autoencoders.
In Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR Interna-
tional Workshop, S+ SSPR 2016, Mérida, Mexico, November 29-December 2, 2016,
Proceedings. Springer, 427-438.

Paul Boniol, Mohammed Meftah, Emmanuel Remy, Bruno Didier, and Themis
Palpanas. 2023. dCNN/dCAM: anomaly precursors discovery in multivariate
time series with deep convolutional neural networks. Data-Centric Engineering
4(2023), €30. https://doi.org/10.1017/dce.2023.25

Jeremy Buhler and Martin Tompa. 2001. Finding motifs using random projec-
tions. In Proceedings of the fifth annual international conference on Computational
biology. 69-76.

Nuno Castro and Paulo Azevedo. 2010. Multiresolution motif discovery in time
series. In Proceedings of the 2010 SIAM international conference on data mining.
SIAM, 665-676.

Joe Catalano, Tom Armstrong, and Tim Oates. 2006. Discovering patterns in
real-valued time series. In European Conference on Principles of Data Mining and
Knowledge Discovery. Springer, 462-469.

Matteo Ceccarello and Johann Gamper. 2022. Fast and Scalable Mining of Time
Series Motifs with Probabilistic Guarantees. Proceedings of the VLDB Endowment
15, 13 (2022), 3841-3853.

Kin-Pong Chan and Ada Wai-Chee Fu. 1999. Efficient time series matching by
wavelets. In Proceedings 15th International Conference on Data Engineering (Cat.
No. 99CB36337). IEEE, 126-133.

Bill Chiu, Eamonn Keogh, and Stefano Lonardi. 2003. Probabilistic discovery
of time series motifs. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining. 493-498.

Sylvain W. Combettes, Paul Boniol, Antoine Mazarguil, Danping Wang, Diego
Vaquero-Ramos, Marion Chauveau, Laurent Oudre, Nicolas Vayatis, Pierre-Paul
Vidal, Alexandra Roren, and Marie-Martine Lefévre-Colau. 2024. Arm-CODA: A
Data Set of Upper-limb Human Movement During Routine Examination. Image
Processing On Line 14 (2024), 1-13.

Sahar Deppe and Volker Lohweg. 2015. Shift-Invariant Feature Extraction
for Time-Series Motif Discovery. In 25. Workshop Computational Intelligence
VDI/VDE-Gesellschaft Mess-und Automatisierungstechnik (GMA).

Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. 1998. Biolog-
ical sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge
university press.

Pedro G Ferreira, Paulo J Azevedo, Candida G Silva, and Rui MM Brito. 2006.
Mining approximate motifs in time series. In Discovery Science: 9th International
Conference, DS 2006, Barcelona, Spain, October 7-10, 2006. Proceedings 9. Springer,
89-101.

Yifeng Gao and Jessica Lin. 2018. Exploring variable-length time series motifs
in one hundred million length scale. Data Mining and Knowledge Discovery 32
(2018), 1200-1228.

Yifeng Gao and Jessica Lin. 2019. HIME: discovering variable-length motifs in
large-scale time series. Knowledge and Information Systems 61 (2019), 513-542.
Yixin Gao, S. Vedula, Carol E. Reiley, N. Ahmidi, B. Varadarajan, Henry C. Lin, L.
Tao, L. Zappella, B. Béjar, D. Yuh, C. C. Chen, R. Vidal, S. Khudanpur, and Gregory
Hager. 2014. JHU-ISI Gesture and Skill Assessment Working Set ( JIGSAWS ) : A
Surgical Activity Dataset for Human Motion Modeling.

Xianping Ge and Padhraic Smyth. 2000. Deformable Markov model templates
for time-series pattern matching. In Proceedings of the sixth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. 81-90.

Thibaut Germain, Charles Truong, and Laurent Oudre. 2024. Linear-trend nor-
malization for multivariate subsequence similarity search. In 2024 IEEE 40th
International Conference on Data Engineering Workshops (ICDEW). IEEE, 167—
175.

Thibaut Germain, Charles Truong, and Laurent Oudre. 2024. Persistence-based
motif discovery in time series. IEEE Transactions on Knowledge and Data Engi-
neering (2024).

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and
H Eugene Stanley. 2000. PhysioBank, PhysioToolkit, and PhysioNet: components
of a new research resource for complex physiologic signals. circulation 101, 23
(2000), e215-€220.

[24

[25

(31]

(32

(33]

(34]

(35]

[36

@
=)

(38]

[39]

[40

[41

[42]

[44]

[45

[46

[47

[48

[49

[50

Josif Grabocka, Nicolas Schilling, and Lars Schmidt-Thieme. 2016. Latent time-
series motifs. ACM Transactions on Knowledge Discovery from Data (TKDD) 11, 1
(2016), 1-20.

Gerald Z Hertz and Gary D. Stormo. 1999. Identifying DNA and protein patterns
with statistically significant alignments of multiple sequences. Bioinformatics
(Oxford, England) 15, 7 (1999), 563-577.

Kyle L Jensen, Mark P Styczynski, Isidore Rigoutsos, and Gregory N Stephanopou-
los. 2006. A generic motif discovery algorithm for sequential data. Bioinformatics
22,1 (2006), 21-28.

Mohammed Kadous. 1995. Australian Sign Language Signs. UCI Machine
Learning Repository. DOI: https://doi.org/10.24432/C5XG6C.

Konstantinos Kalpakis, Dhiral Gada, and Vasundhara Puttagunta. 2001. Distance
measures for effective clustering of ARIMA time-series. In Proceedings 2001 IEEE
international conference on data mining. IEEE, 273-280.

Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.
2001. Dimensionality reduction for fast similarity search in large time series
databases. Knowledge and information Systems 3 (2001), 263-286.

Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.
2001. Locally adaptive dimensionality reduction for indexing large time series
databases. In Proceedings of the 2001 ACM SIGMOD international conference on
Management of data. 151-162.

Eamonn Keogh and Jessica Lin. 2005. Clustering of time-series subsequences
is meaningless: implications for previous and future research. Knowledge and
information systems 8 (2005), 154-177.

Harold W Kuhn. 1955. The Hungarian method for the assignment problem.
Naval research logistics quarterly 2, 1-2 (1955), 83-97.

Hoang Thanh Lam, Ninh Dang Pham, and Toon Calders. 2011. Online discovery
of top-k similar motifs in time series data. In Proceedings of the 2011 SIAM
International Conference on Data Mining. SIAM, 1004-1015.

Yuhong Li, Hou U Leong, Man Lung Yiu, and Zhiguo Gong. 2015. Quick-motif:
An efficient and scalable framework for exact motif discovery. In 2015 IEEE 31st
International Conference on Data Engineering. IEEE, 579-590.

Yuan Li and Jessica Lin. 2010. Approximate variable-length time series motif
discovery using grammar inference. In Proceedings of the Tenth International
Workshop on Multimedia Data Mining. 1-9.

Yuan Li, Jessica Lin, and Tim Oates. 2012. Visualizing variable-length time series
motifs. In Proceedings of the 2012 SIAM international conference on data mining.
SIAM, 895-906.

Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn Keogh. 2018. Matrix
profile X: VALMOD-scalable discovery of variable-length motifs in data series.
In Proceedings of the 2018 international conference on management of data. 1053
1066.

Zheng Liu, Jeffrey Xu Yu, Xuemin Lin, Hongjun Lu, and Wei Wang. 2005. Locating
motifs in time-series data. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining. Springer, 343-353.

JLEKS Lonardi and Pranav Patel. 2002. Finding motifs in time series. In Proc. of
the 2nd Workshop on Temporal Data Mining. 53-68.

Frank Madrid, Shima Imani, Ryan Mercer, Zachary Zimmerman, Nader Shakibay,
and Eamonn Keogh. 2019. Matrix profile xx: Finding and visualizing time series
motifs of all lengths using the matrix profile. In 2019 IEEE International conference
on big knowledge (ICBK). IEEE, 175-182.

Philip Mehrgardt, Matloob Khushi, Simon Poon, and Anusha Withana. 2022.
Pulse Transit Time PPG Dataset. PhysioNet 10 (2022), e215-e220.

David Minnen, Charles L Isbell, Irfan Essa, and Thad Starner. 2007. Discovering
multivariate motifs using subsequence density estimation and greedy mixture
learning. In Proceedings of the national conference on artificial intelligence, Vol. 22.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 615.
David Minnen, Thad Starner, Irfan Essa, and Charles Isbell. 2006. Discovering
characteristic actions from on-body sensor data. In 2006 10th IEEE international
symposium on wearable computers. IEEE, 11-18.

David Minnen, Thad Starner, Irfan A Essa, and Charles Lee Isbell Jr. 2007. Im-
proving Activity Discovery with Automatic Neighborhood Estimation.. In IJCAIL
Vol. 7. 2814-2819.

Yasser Mohammad and Toyoaki Nishida. 2014. Exact discovery of length-range
motifs. In Asian Conference on Intelligent Information and Database Systems.
Springer, 23-32.

Abdullah Mueen and Nikan Chavoshi. 2015. Enumeration of time series motifs
of all lengths. Knowledge and Information Systems 45, 1 (2015), 105-132.
Abdullah Mueen and Eamonn Keogh. 2010. Online discovery and maintenance
of time series motifs. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining. 1089-1098.

Abdullah Mueen, Eamonn Keogh, and Nima Bigdely-Shamlo. 2009. Finding time
series motifs in disk-resident data. In 2009 Ninth IEEE International Conference
on Data Mining. IEEE, 367-376.

Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Brandon West-
over. 2009. Exact discovery of time series motifs. In Proceedings of the 2009 SIAM
international conference on data mining. SIAM, 473-484.

Abdullah Mueen, Sheng Zhing, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krish-
namurthy Viswanathan, Chetan Gupta, and Eamonn Keogh. 2022. The Fastest
Similarity Search Algorithm for Time Series Subsequences under Euclidean
Distance. http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html.


https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1017/dce.2023.25
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

David Murray, Lina Stankovic, and Vladimir Stankovic. 2017. An electrical
load measurements dataset of United Kingdom households from a two-year
longitudinal study. Scientific data 4, 1 (2017), 1-12.

Fabian Kai-Dietrich Noering, Yannik Schroeder, Konstantin Jonas, and Frank
Klawonn. 2021. Pattern discovery in time series using autoencoder in comparison
to nonlearning approaches. Integrated Computer-Aided Engineering 28, 3 (2021),
237-256.

Pawan Nunthanid, Vit Niennattrakul, and Chotirat Ann Ratanamahatana. 2011.
Discovery of variable length time series motif. In The 8th Electrical Engineer-
ing/Electronics, Computer, Telecommunications and Information Technology (ECTI)
Association of Thailand-Conference 2011. IEEE, 472-475.

Pawan Nunthanid, Vit Niennattrakul, and Chotirat Ann Ratanamahatana. 2012.
Parameter-free motif discovery for time series data. In 2012 9th International
Conference on Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology. IEEE, 1-4.

Tim Oates. 2002. PERUSE: An unsupervised algorithm for finding recurring
patterns in time series. In 2002 IEEE International Conference on Data Mining,
2002. Proceedings. IEEE, 330-337.

Themis Palpanas. 2015. Data Series Management: The Road to Big Sequence
Analytics. SIGMOD Rec. 44, 2 (Aug. 2015), 47-52. https://doi.org/10.1145/2814710.
2814719

John Paparrizos and Luis Gravano. 2016. k-Shape: Efficient and Accurate
Clustering of Time Series. SIGMOD Rec. 45, 1 (June 2016), 69-76. https:
//doi.org/10.1145/2949741.2949758

John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and
Michael J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for uni-
variate time-series anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022),
1697-1711. https://doi.org/10.14778/3529337.3529354

Adrien Petralia, Philippe Charpentier, Paul Boniol, and Themis Palpanas. 2023.
Appliance Detection Using Very Low-Frequency Smart Meter Time Series. In
Proceedings of the 14th ACM International Conference on Future Energy Systems
(Orlando, FL, USA) (e-Energy ’23). Association for Computing Machinery, New
York, NY, USA, 214-225. https://doi.org/10.1145/3575813.3595198

Pavel A Pevzner, Sing-Hoi Sze, et al. 2000. Combinatorial approaches to finding
subtle signals in DNA sequences.. In ISMB, Vol. 8. 269-278.

Thanawin Rakthanmanon, Eamonn J Keogh, Stefano Lonardi, and Scott Evans.
2012. MDL-based time series clustering. Knowledge and information systems 33
(2012), 371-399.

Simona Rombo and Giorgio Terracina. 2004. Discovering representative models in
large time series databases. In Flexible Query Answering Systems: 6th International
Conference, FQAS 2004, Lyon, France, June 24-26, 2004. Proceedings 6. Springer,
84-97.

Chuitian Rong, Ziliang Chen, Chunbin Lin, and Jianming Wang. 2020. Motif
Discovery Using Similarity-Constraints Deep Neural Networks. In International
Conference on Database Systems for Advanced Applications. Springer, 587-603.
Stijn J Rotman, Boris Cule, and Len Feremans. 2023. Efficiently Mining Fre-
quent Representative Motifs in Large Collections of Time Series. In 2023 IEEE
International Conference on Big Data (BigData). IEEE, 66-75.

Lucie Saclova, Andrea Nemcova, Radovan Smisek, Lukas Smital, Martin Vitek,
and Marina Ronzhina. 2022. Reliable P wave detection in pathological ECG
signals. Scientific Reports 12, 1 (2022), 6589.

Saquib Sarfraz, Naila Murray, Vivek Sharma, Ali Diba, Luc Van Gool, and Rainer
Stiefelhagen. 2021. Temporally-weighted hierarchical clustering for unsupervised
action segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 11225-11234.

Patrick Schéfer and Ulf Leser. 2022. Motiflets: Simple and Accurate Detection of
Motifs in Time Series. Proceedings of the VLDB Endowment 16, 4 (2022), 725-737.
Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly
detection in time series: a comprehensive evaluation. Proc. VLDB Endow. 15, 9
(May 2022), 1779-1797. https://doi.org/10.14778/3538598.3538602

Pavel Senin, Jessica Lin, Xing Wang, Tim Oates, Sunil Gandhi, Arnold P Boedi-
hardjo, Crystal Chen, and Susan Frankenstein. 2018. Grammarviz 3.0: Interactive
discovery of variable-length time series patterns. ACM Transactions on Knowledge
Discovery from Data (TKDD) 12, 1 (2018), 1-28.

Rodger Staden. 1989. Methods for discovering novel motifs in nucleic acid
sequences. Bioinformatics 5, 4 (1989), 293-298.

(71]

[72]

(73]

(74]

[75]

[76]

(7]

(78]

[79]

[80]

(81]

(82]

(85]

(86]

(87]

(88]

Zbigniew R Struzik and Arno Siebes. 1999. Measuring time series similarity
through large singular features revealed with wavelet transformation. In Proceed-
ings. Tenth International Workshop on Database and Expert Systems Applications.
DEXA 99. IEEE, 162-166.

Zeeshan Syed, Collin Stultz, Manolis Kellis, Piotr Indyk, and John Guttag. 2010.
Motif discovery in physiological datasets: a methodology for inferring predictive
elements. ACM Transactions on Knowledge Discovery from Data (TKDD) 4, 1
(2010), 1-23.

Yoshiki Tanaka, Kazuhisa Iwamoto, and Kuniaki Uehara. 2005. Discovery of
time-series motif from multi-dimensional data based on MDL principle. Machine
Learning 58 (2005), 269-300.

Yoshiki Tanaka and Kuniaki Uehara. 2003. Discover motifs in multi-dimensional
time-series using the principal component analysis and the mdl principle. In In-
ternational Workshop on Machine Learning and Data Mining in Pattern Recognition.

Springer, 252-265.
eng Tang and Stephen Shaoyi Liao. 2008. Discovering original motifs with

different lengths from time series. Knowledge-Based Systems 21, 7 (2008), 666—
671.

N Tatbul. 2018.  Precision and Recall for Time Series.
arXiv:1803.03639 (2018).

Sahar Torkamani and Volker Lohweg. 2014. Identification of multi-scale motifs.
In ProcEEDings 24. Workshop comPutational intElligEncE. 277.

Sahar Torkamani, Volker Lohweg, F Hoffmann, and E Hiillermeier. 2015. Shift-
invariant feature extraction for time-series motif discovery. In 25. Workshop Com-
putational Intelligence, ser. Schriftenreihe des Instituts fiir Angewandte Informatik-
Automatisierungstechnik am Karlsruher Institut fir Technologie, Vol. 54. 23-45.
Cao Duy Truong and Duong Tuan Anh. 2015. A fast method for motif discovery
in large time series database under dynamic time warping. In Knowledge and
Systems Engineering: Proceedings of the Sixth International Conference KSE 2014.
Springer, 155-167.

Daan Van Wesenbeeck, Aras Yurtman, Wannes Meert, and Hendrik Blockeel.
2024. LoCoMotif: Discovering time-warped motifs in time series. Data Mining
and Knowledge Discovery (2024), 1-30.

Ugo Vespier, Siegfried Nijssen, and Arno Knobbe. 2013. Mining characteristic
multi-scale motifs in sensor-based time series. In Proceedings of the 22nd ACM
international conference on information & knowledge management. 2393-2398.
Dragomir Yankov, Eamonn Keogh, Jose Medina, Bill Chiu, and Victor Zordan.
2007. Detecting time series motifs under uniform scaling. In Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and data
mining. 844-853.

Chin-Chia Michael Yeh, Nickolas Kavantzas, and Eamonn Keogh. 2017. Matrix
Profile VI: Meaningful Multidimensional Motif Discovery. In 2017 IEEE Inter-
national Conference on Data Mining (ICDM). 565-574. https://doi.org/10.1109/
ICDM.2017.66

Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei
Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn
Keogh. 2016. Matrix profile I: all pairs similarity joins for time series: a unifying
view that includes motifs, discords and shapelets. In 2016 IEEE 16th international
conference on data mining (ICDM). Teee, 1317-1322.

Myat Su Yin, Songsri Tangsripairoj, and Benjarath Pupacdi. 2014. Variable length
motif-based time series classification. In Recent Advances in Information and
Communication Technology: Proceedings of the 10th International Conference on
Computing and Information Technology (IC21T2014). Springer, 73-82.

Sorrachai Yingchareonthawornchai, Haemwaan Sivaraks, Thanawin Rakthan-
manon, and Chotirat Ann Ratanamahatana. 2013. Efficient proper length time
series motif discovery. In 2013 IEEE 13th international conference on data mining.
IEEE, 1265-1270.

Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar, and
Eamonn Keogh. 2018. Matrix profile XI: SCRIMP++: time series motif discovery
at interactive speeds. In 2018 IEEE international conference on data mining (ICDM).
IEEE, 837-846.

Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael
Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk, and Eamonn Keogh. 2016.
Matrix profile ii: Exploiting a novel algorithm and gpus to break the one hundred
million barrier for time series motifs and joins. In 2016 IEEE 16th international
conference on data mining (ICDM). IEEE, 739-748.

arXiv preprint


https://doi.org/10.1145/2814710.2814719
https://doi.org/10.1145/2814710.2814719
https://doi.org/10.1145/2949741.2949758
https://doi.org/10.1145/2949741.2949758
https://doi.org/10.14778/3529337.3529354
https://doi.org/10.1145/3575813.3595198
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.1109/ICDM.2017.66
https://doi.org/10.1109/ICDM.2017.66

	Abstract
	1 Introduction
	2 Time Series Motif Discovery
	2.1 Motif Discovery: A brief History
	2.2 Time Series and Motifs Notations
	2.3 Motif discovery: A multifaceted Problem
	2.4 Process-centric Taxonomy
	2.5 Motif Discovery in Practice

	3 Proposed Benchmark
	3.1 Real Time Series Collection
	3.2 Synthetic generator
	3.3 Representative Motif Discovery Methods
	3.4 Parameters Settings
	3.5 Evaluation Measures

	4 Experimental Evaluation
	5 Conclusions
	References

